Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene

作者: Giampiero Lovat , George W. Hanson , Rodolfo Araneo , Paolo Burghignoli

DOI: 10.1103/PHYSREVB.87.115429

关键词:

摘要: Analytical expressions are presented for the intraband conductivity tensor of graphene that includes spatial dispersion arbitrarily wave-vector values and presence a nonzero Fermi energy. The elements derived from semiclassical Boltzmann transport equation under both relaxation-time approximation Bhatnagar-Gross-Krook model (which allows an extra degree freedom to enforce number conservation). based on linear electron near Dirac points, extend previous results assumed small values; these shown be inadequate very slow waves expected nanoribbons. new also compared obtained by numericalintegrationoverthefirstBrillouinzoneusingtheexact(tight-binding)electrondispersionrelation.Very good agreement is found between analytical exact numerical results. Furthermore, comparison with longitudinal random-phase made. It analytically lead correct value quantum capacitance sheet ignoring leads serious errors in propagation properties fundamental modes

参考文章(32)
Deji Akinwande, H. S. Philip Wong, Carbon Nanotube and Graphene Device Physics ,(2011)
S. Das Sarma, E. H. Hwang, Dielectric function, screening, and plasmons in 2D graphene arXiv: Strongly Correlated Electrons. ,(2006) , 10.1103/PHYSREVB.75.205418
N. D. Mermin, Lindhard Dielectric Function in the Relaxation-Time Approximation Physical Review B. ,vol. 1, pp. 2362- 2363 ,(1970) , 10.1103/PHYSREVB.1.2362
D. A. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the triangle International Journal for Numerical Methods in Engineering. ,vol. 21, pp. 1129- 1148 ,(1985) , 10.1002/NME.1620210612
L A Falkovsky, Optical properties of graphene and IV-VI semiconductors Physics-Uspekhi. ,vol. 51, pp. 887- 897 ,(2008) , 10.1070/PU2008V051N09ABEH006625
Jilin Xia, Fang Chen, Jinghong Li, Nongjian Tao, Measurement of the quantum capacitance of graphene. Nature Nanotechnology. ,vol. 4, pp. 505- 509 ,(2009) , 10.1038/NNANO.2009.177
George W. Hanson, Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene Journal of Applied Physics. ,vol. 103, pp. 064302- ,(2008) , 10.1063/1.2891452
Penghong Liu, Wei Cai, Lei Wang, Xinzheng Zhang, Jingjun Xu, Tunable terahertz optical antennas based on graphene ring structures Applied Physics Letters. ,vol. 100, pp. 153111- ,(2012) , 10.1063/1.3702819
A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, L. Martin-Moreno, Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons Physical Review B. ,vol. 85, pp. 081405- ,(2012) , 10.1103/PHYSREVB.85.081405
Ashkan Vakil, Nader Engheta, Fourier Optics on Graphene Physical Review B. ,vol. 85, pp. 075434- ,(2012) , 10.1103/PHYSREVB.85.075434