Development of a self-cleaning dispersion and exposure chamber: Application to the monitoring of simulated accidents involving the generation of airborne nanoparticles

作者: Alberto Clemente , M. Pilar Lobera , Francisco Balas , Jesus Santamaria

DOI: 10.1016/J.JHAZMAT.2014.07.053

关键词:

摘要: Abstract The release of hazardous nanoparticulate matter in accidental situations was simulated a specially designed 13-m3 stainless steel airtight chamber, which allowed the dispersion analysis airborne practically particle-free environment (less than 2 #/cm3) and presence background atmospheric aerosols. A fast recovering initial situation achieved by means tandem HEPA-filtered air deionized water system. Both unintended spilling silica-based powders continuous emission 100-nm SiO2 nanoparticles were used as aerosol generation events. analyzed terms particle number concentrations (PNC), size distributions source strengths. aerosols reached peak PNC for particles range from 5 nm to 1 μm with strengths about 108 #/h background-filled 1010 atmosphere. No agglomeration noticed released nanoparticles, suggesting that low enough prevent coagulation diameters over 80 nm. Results indicate emitted within most penetrating sizes similar scenarios.

参考文章(41)
Vicki H. Grassian, Andrea Adamcakova-Dodd, John M. Pettibone, Patrick I. O'shaughnessy, Peter S. Thorne, Inflammatory response of mice to manufactured titanium dioxide nanoparticles: Comparison of size effects through different exposure routes Nanotoxicology. ,vol. 1, pp. 211- 226 ,(2007) , 10.1080/17435390701694295
Jacky A. Rosati, David Leith, Chong S. Kim, Monodisperse and Polydisperse Aerosol Deposition in a Packed Bed Aerosol Science and Technology. ,vol. 37, pp. 528- 535 ,(2003) , 10.1080/02786820300974
Andrea R. Ferro, Royal J. Kopperud, Lynn M. Hildemann, Source strengths for indoor human activities that resuspend particulate matter. Environmental Science & Technology. ,vol. 38, pp. 1759- 1764 ,(2004) , 10.1021/ES0263893
Francisco Balas, Manuel Arruebo, Jone Urrutia, Jesus Santamaria, Reported nanosafety practices in research laboratories worldwide. Nature Nanotechnology. ,vol. 5, pp. 93- 96 ,(2010) , 10.1038/NNANO.2010.1
Naomi Lubick, Hunting for engineered nanomaterials in the environment. Environmental Science & Technology. ,vol. 43, pp. 6446- 6447 ,(2009) , 10.1021/ES902174Z
Senem Ozgen, Giovanna Ripamonti, Stefano Cernuschi, Michele Giugliano, Ultrafine particle emissions for municipal waste-to-energy plants and residential heating boilers Reviews in Environmental Science and Bio\/technology. ,vol. 11, pp. 407- 415 ,(2012) , 10.1007/S11157-012-9280-0
Jose R. Peralta-Videa, Lijuan Zhao, Martha L. Lopez-Moreno, Guadalupe de la Rosa, Jie Hong, Jorge L. Gardea-Torresdey, Nanomaterials and the environment: A review for the biennium 2008-2010 Journal of Hazardous Materials. ,vol. 186, pp. 1- 15 ,(2011) , 10.1016/J.JHAZMAT.2010.11.020
Pieter van Broekhuizen, Fleur van Broekhuizen, Ralf Cornelissen, Lucas Reijnders, Workplace exposure to nanoparticles and the application of provisional nanoreference values in times of uncertain risks Journal of Nanoparticle Research. ,vol. 14, pp. 770- ,(2012) , 10.1007/S11051-012-0770-3
Asger W Nørgaard, Keld A Jensen, Christian Janfelt, Frants R Lauritsen, Per A Clausen, Peder Wolkoff, None, Release of VOCs and Particles During Use of Nanofilm Spray Products Environmental Science & Technology. ,vol. 43, pp. 7824- 7830 ,(2009) , 10.1021/ES9019468
Y. Dupart, S. M. King, B. Nekat, A. Nowak, A. Wiedensohler, H. Herrmann, G. David, B. Thomas, A. Miffre, P. Rairoux, B. D'Anna, C. George, Mineral dust photochemistry induces nucleation events in the presence of SO2 Proceedings of the National Academy of Sciences of the United States of America. ,vol. 109, pp. 20842- 20847 ,(2012) , 10.1073/PNAS.1212297109