Approximations to the Clarke Generalized Jacobians and Nonsmooth Least-Squares Minimization

作者: H. Xu , A. M. Rubinov , B. M. Glover

DOI: 10.1007/978-1-4613-3285-5_10

关键词:

摘要: Here we use a uniform approximation to the Clarke generalized Jacobian design an algorithm for solving class of nonsmooth least-squares minimization problems: \(\min \phi (x) \equiv \frac{1}{2}\sum\nolimits_{i = 1}^m {{f_i}{{(x)}^2} \frac{1}{2}F{{(x)}^T}F(x),} \) where F : ℝ n → m is locally Lipschitz mapping. We approximate subdifferential φ by approximating F. Regularity conditions global convergence are discussed in details.

参考文章(31)
H. Xu, B. M. Glover, New Version of the Newton Method for Nonsmooth Equations Journal of Optimization Theory and Applications. ,vol. 93, pp. 395- 415 ,(1997) , 10.1023/A:1022658208295
Michael C. Ferris, Daniel Ralph, Projected Gradient Methods for Nonlinear Complementarity Problems via Normal Maps WORLD SCIENTIFIC. pp. 57- 87 ,(1995) , 10.1142/9789812812827_0005
C. Lemaréchal, J. Zowe, A Condensed Introduction to Bundle Methods in Nonsmooth Optimization Springer, Dordrecht. pp. 357- 382 ,(1994) , 10.1007/978-94-009-0369-2_12
Jong-Shi Pang, Zhi-Quan Luo, Daniel Ralph, Mathematical Programs with Equilibrium Constraints ,(1996)
Klaus Schittkowski, Computational Mathematical Programming ,(2011)
V. F. Demʹi︠a︡nov, Aleksandr Moiseevich Rubinov, Constructive Nonsmooth Analysis ,(1995)
Ding-zhu Du, Frank Kwang-ming Hwang, Li-qun Qi, Robert S Womersley, Recent Advances in Nonsmooth Optimization WORLD SCIENTIFIC. ,(1995) , 10.1142/2752
Frank H. Clarke, Optimization and nonsmooth analysis ,(1983)
H. Xu, X. W. Chang, Approximate Newton Methods for Nonsmooth Equations Journal of Optimization Theory and Applications. ,vol. 93, pp. 373- 394 ,(1997) , 10.1023/A:1022606224224
Stephen Clyde Billups, Algorithms for complementarity problems and generalized equations University of Wisconsin at Madison. ,(1996)