Limits of Pluri–Tangent Planes to Quartic Surfaces

作者: Ciro Ciliberto , Thomas Dedieu

DOI: 10.1007/978-3-319-05404-9_6

关键词:

摘要: We describe, for various degenerations S → Δ of quartic K3 surfaces over the complex unit disk (e.g., to union four general planes, and a Kummer surface), limits as t ∈ ∗ tends 0 Severi varieties V δ (S ), parametrizing irreducible δ-nodal plane sections . give applications this (i) counting nodal curves through base points in special position, (ii) irreducibility surface, (iii) monodromy universal family rational on surfaces.

参考文章(37)
Joe Harris, Definitions of Dimension and Elementary Examples Springer, New York, NY. pp. 133- 150 ,(1992) , 10.1007/978-1-4757-2189-8_11
Joe Harris, Ian Morrison, Moduli of curves ,(1998)
Jim Bryan, Naichung Conan Leung, The enumerative geometry of K3 surfaces and modular forms Journal of the American Mathematical Society. ,vol. 13, pp. 371- 410 ,(2000) , 10.1090/S0894-0347-00-00326-X
Christina Birkenhake, Herbert Lange, Complex Abelian varieties ,(1992)
E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of algebraic curves Springer Berlin Heidelberg. ,(1985) , 10.1007/978-1-4757-5323-3
R. W. H. T. Hudson, Kummer's Quartic Surface ,(2007)
Arnaud Beauville, COUNTING RATIONAL CURVES ON K3 SURFACES Duke Mathematical Journal. ,vol. 97, pp. 99- 108 ,(1999) , 10.1215/S0012-7094-99-09704-1
Lucia Caporaso, Joe Harris, Parameter spaces for curves on surfaces and enumeration of rational curves Compositio Mathematica. ,vol. 113, pp. 155- 208 ,(1998) , 10.1023/A:1000401119940