Pentagon identities arising in supersymmetric gauge theory computations

作者: Ilmar Gahramanov , Deniz N. Bozkurt

DOI: 10.1134/S0040577919020028

关键词:

摘要: The partition functions of three-dimensional N=2 supersymmetric gauge theories on different manifolds can be expressed as q-hypergeometric integrals. By comparing the mirror dual theories, one finds complicated integral identities. In some cases, these identities written in form pentagon relations. Such often have an interpretation Pachner's 3-2 move for triangulated via so-called 3d-3d correspondence. From physics perspective, another important application is that they may used to construct new solutions quantum Yang-Baxter equation.

参考文章(58)
Hjalmar Rosengren, Ilmar Gahramanov, Integral pentagon relations for 3d superconformal indices arXiv: High Energy Physics - Theory. ,(2014) , 10.1090/PSPUM/093/01569
Takeshi Morita, Akinori Tanaka, Hironori Mori, Abelian 3d mirror symmetry on $\mathbb{RP}^2 \times \mathbb{S}^1$ with $N_f=1$ arXiv: High Energy Physics - Theory. ,(2015) , 10.1007/JHEP09(2015)154
Anton Kapustin, Brian Willett, Generalized Superconformal Index for Three Dimensional Field Theories arXiv: High Energy Physics - Theory. ,(2011)
Ilmar Gahramanov, Mathematical structures behind supersymmetric dualities arXiv: Mathematical Physics. ,(2015) , 10.5817/AM2015-5-273
R. M. KASHAEV, The hyperbolic volume of knots from quantum dilogarithm Letters in Mathematical Physics. ,vol. 39, pp. 269- 275 ,(1996) , 10.1023/A:1007364912784
A. Yu. Morozov, A. D. Mironov, D. V. Galakhov, A. V. Smirnov, Three-dimensional extensions of the Alday-Gaiotto-Tachikawa relation Theoretical and Mathematical Physics. ,vol. 172, pp. 939- 962 ,(2012) , 10.1007/S11232-012-0088-4
R. M. Kashaev, On beta pentagon relations arXiv: Mathematical Physics. ,(2014) , 10.1007/S11232-014-0208-4
V. P. Spiridonov, Elliptic beta integrals and solvable models of statistical mechanics arXiv: High Energy Physics - Theory. ,(2010)
Akinori Tanaka, Hironori Mori, Takeshi Morita, Superconformal index on $\mathbb{RP}^2 \times \mathbb{S}^1$ and mirror symmetry Physical Review D. ,vol. 91, pp. 105023- ,(2015) , 10.1103/PHYSREVD.91.105023