Automatic knee joint segmentation using Douglas-Rachford splitting method

作者: C. Rini , B. Perumal , M. Pallikonda Rajasekaran

DOI: 10.1007/S11042-019-08303-8

关键词:

摘要: In the medical field, magnetic resonance imaging (MRI) scans are widely used for conducting research in osteoarthritis and to study about disease of a patient. Still MRI provide details knee joint image patient, it is difficult perform quantification bone, cartilage, meniscus regions. A fully automatic segmentation required segment joint, cartilage images from scan necessary reduce manual intervention. this work, an technique based on proximal splitting method presented. Douglas-Rachford algorithm employed paper. The structures analyzed region segmented. Then quantization performed which several morphological measures computed. These find out growth OA effects drugs OA.

参考文章(38)
Jérôme Schmid, Nadia Magnenat-Thalmann, MRI Bone Segmentation Using Deformable Models and Shape Priors medical image computing and computer assisted intervention. ,vol. 11, pp. 119- 126 ,(2008) , 10.1007/978-3-540-85988-8_15
Liana M. Lorigo, Olivier Faugeras, W. E. L. Grimson, Renaud Keriven, Ron Kikinis, Segmentation of Bone in Clinical Knee MRI Using Texture-Based Geodesic Active Contours medical image computing and computer assisted intervention. pp. 1195- 1204 ,(1998) , 10.1007/BFB0056309
Jenny Folkesson, Erik Dam, Ole Fogh Olsen, Paola Pettersen, Claus Christiansen, Automatic segmentation of the articular cartilage in knee MRI using a hierarchical multi-class classification scheme medical image computing and computer assisted intervention. ,vol. 8, pp. 327- 334 ,(2005) , 10.1007/11566465_41
Jim Douglas, H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables Transactions of the American Mathematical Society. ,vol. 82, pp. 421- 439 ,(1956) , 10.1090/S0002-9947-1956-0084194-4
José G. Tamez-Pena, J. Farber, P. C. Gonzalez, E. Schreyer, E. Schneider, S. Totterman, Unsupervised Segmentation and Quantification of Anatomical Knee Features: Data From the Osteoarthritis Initiative IEEE Transactions on Biomedical Engineering. ,vol. 59, pp. 1177- 1186 ,(2012) , 10.1109/TBME.2012.2186612
Sufyan Y. Ababneh, Jeff W. Prescott, Metin N. Gurcan, Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research Medical Image Analysis. ,vol. 15, pp. 438- 448 ,(2011) , 10.1016/J.MEDIA.2011.01.007
Damien Loeuille, Isabelle Chary-Valckenaere, Jacqueline Champigneulle, Anne-Christine Rat, Frédéric Toussaint, Astrid Pinzano-Watrin, Jean Christophe Goebel, Didier Mainard, Alain Blum, Jacques Pourel, Patrick Netter, Pierre Gillet, Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis & Rheumatism. ,vol. 52, pp. 3492- 3501 ,(2005) , 10.1002/ART.21373
Liang Shan, Cecil Charles, Marc Niethammer, Automatic multi-atlas-based cartilage segmentation from knee MR images 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI). ,vol. 2012, pp. 1028- 1031 ,(2012) , 10.1109/ISBI.2012.6235733
Jean- Pierre Raynauld, Johanne Martel-Pelletier, Marie-Josée Berthiaume, Françoys Labonté, Gilles Beaudoin, Jacques A. de Guise, Daniel A. Bloch, Denis Choquette, Boulos Haraoui, Roy D. Altman, Marc C. Hochberg, Joan M. Meyer, Gary A. Cline, Jean-Pierre Pelletier, Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis & Rheumatism. ,vol. 50, pp. 476- 487 ,(2004) , 10.1002/ART.20000
Ali Guermazi, Felix Eckstein, Marie-Pierre Hellio Le Graverand-Gastineau, Philip G. Conaghan, Deborah Burstein, Helen Keen, Frank W. Roemer, Osteoarthritis: current role of imaging. Medical Clinics of North America. ,vol. 93, pp. 101- 126 ,(2009) , 10.1016/J.MCNA.2008.08.003