Quantum mechanics in a discrete space-time

作者: P. Šťovíček , J. Tolar

DOI: 10.1016/0034-4877(84)90030-2

关键词:

摘要: Abstract A complete description of quantum kinematics in the sense Mackey and Weyl is presented for class systems whose underlying configuration spaces are finite sets equipped with structure Abelian groups. For a given group there unique unitarily equivalent, irreducible imprimitivity finite-dimensional Hilbert space. Schwinger's tensor product decomposition extended to this systems. The analogue Galilei over space-time lattice yields discrete time evolution operator which proposed be free Hamiltonian.

参考文章(13)
Aaron B. Budgor, Quantum mechanics on topological networks Journal of Mathematical Physics. ,vol. 17, pp. 1538- 1545 ,(1976) , 10.1063/1.523077
George W. Mackey, A theorem of Stone and von Neumann Duke Mathematical Journal. ,vol. 16, pp. 313- 326 ,(1949) , 10.1215/S0012-7094-49-01631-2
A. Das, Cellular space-time and quantum field theory Il Nuovo Cimento. ,vol. 18, pp. 482- 504 ,(1960) , 10.1007/BF02732721
Elliott W. Montroll, Quantum Theory on a Network. I. A Solvable Model Whose Wavefunctions Are Elementary Functions Journal of Mathematical Physics. ,vol. 11, pp. 635- 648 ,(1970) , 10.1063/1.1665178
L. C. Welch, Quantum mechanics in a discrete space-time Il Nuovo Cimento B. ,vol. 31, pp. 279- 288 ,(1976) , 10.1007/BF02728157
E. A. B. Cole, TRANSITION FROM A CONTINUOUS TO A DISCRETE SPACE--TIME SCHEME. Nuovo Cimento Della Societa Italiana Di Fisica A-nuclei Particles and Fields. ,vol. 66, pp. 645- 656 ,(1970) , 10.1007/BF02824710
V. Ambarzumian, D. Iwanenko, Zur Frage nach Vermeidung der unendlichen Selbstrückwirkung des Elektrons European Physical Journal. ,vol. 64, pp. 563- 567 ,(1930) , 10.1007/BF01397206
H. D. Doebner, J. Tolar, Quantum Mechanics on Homogeneous Spaces Journal of Mathematical Physics. ,vol. 16, pp. 975- 984 ,(1975) , 10.1063/1.522604
Charles B. Sharpe, An Inverse Problem Associated with the Discrete Schroedinger Equation SIAM Journal on Applied Mathematics. ,vol. 32, pp. 405- 417 ,(1977) , 10.1137/0132033
H. D. Doebner, O. Melsheimer, Limitable Dynamical Groups in Quantum Mechanics. I. General Theory and a Spinless Model Journal of Mathematical Physics. ,vol. 9, pp. 1638- 1656 ,(1968) , 10.1063/1.1664494