A generalized model for description of propagation pulses in optical fiber

作者: Nikolay A. Kudryashov

DOI: 10.1016/J.IJLEO.2019.05.069

关键词:

摘要: Abstract We consider the mathematical model with arbitrary power of nonlinearity which is described by generalized Schrodinger equation. The Cauchy problem for this equation not solved inverse scattering transform and we use traveling wave reduction nonlinear partial differential Using solutions find first integrals system equations corresponding to real imaginary parts profile pulse a complex function. reduced means transformations first-order ordinary expressing via Weierstrass Jacobi elliptic functions. influence degree on structure periodic solitary waves studied. It demonstrated that allows control amplitude length waves.

参考文章(61)
Valerii I. Gromak, Ilpo Laine, Shimomura Shun, None, Painlevé differential equations in the complex plane ,(2002)
Nikolai A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations Chaos Solitons & Fractals. ,vol. 24, pp. 1217- 1231 ,(2005) , 10.1016/J.CHAOS.2004.09.109
Nikolai A Kudryashov, Fourth-order analogies to the Painlevé equations Journal of Physics A. ,vol. 35, pp. 4617- 4632 ,(2002) , 10.1088/0305-4470/35/21/310
Nikolai A. Kudryashov, Amalgamations of the Painlevé equations Journal of Mathematical Physics. ,vol. 44, pp. 6160- 6178 ,(2003) , 10.1063/1.1623332
N.A. Kudryashov, On types of nonlinear nonintegrable equations with exact solutions Physics Letters A. ,vol. 155, pp. 269- 275 ,(1991) , 10.1016/0375-9601(91)90481-M
N. A. Kudryashov, Solitary and periodic solutions of the generalized Kuramoto-Sivashinsky equation Regular & Chaotic Dynamics. ,vol. 13, pp. 234- 238 ,(2008) , 10.1134/S1560354708030088
N.A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation Physics Letters A. ,vol. 147, pp. 287- 291 ,(1990) , 10.1016/0375-9601(90)90449-X
David J. Kaup, Alan C. Newell, An exact solution for a derivative nonlinear Schrödinger equation Journal of Mathematical Physics. ,vol. 19, pp. 798- 801 ,(1978) , 10.1063/1.523737