Root systems, representations of quivers and invariant theory

作者: Victor G. Kac

DOI: 10.1007/BFB0063236

关键词:

摘要:

参考文章(12)
Peter Gabriel, Unzerlegbare Darstellungen I Manuscripta Mathematica. ,vol. 6, pp. 71- 103 ,(1972) , 10.1007/BF01298413
Victor Kac, Kei-ichi Watanabe, Finite linear groups whose ring of invariants is a complete intersection Bulletin of the American Mathematical Society. ,vol. 6, pp. 221- 223 ,(1982) , 10.1090/S0273-0979-1982-14989-8
L A Nazarova, REPRESENTATIONS OF QUIVERS OF INFINITE TYPE Mathematics of The Ussr-izvestiya. ,vol. 7, pp. 749- 792 ,(1973) , 10.1070/IM1973V007N04ABEH001975
Hanspeter Kraft, Parametrisierung von Konjugationsklassen in $$\mathfrak{s}\mathfrak{l}_n$$ Mathematische Annalen. ,vol. 234, pp. 209- 220 ,(1978) , 10.1007/BF01420644
Claus Michael Ringel, Representations of K-species and bimodules Journal of Algebra. ,vol. 41, pp. 269- 302 ,(1976) , 10.1016/0021-8693(76)90184-8
D. Luna, Adhérences d'orbite et invariants Inventiones Mathematicae. ,vol. 29, pp. 231- 238 ,(1975) , 10.1007/BF01389851
I N Bernstein, I M Gel'fand, V A Ponomarev, COXETER FUNCTORS AND GABRIEL'S THEOREM Russian Mathematical Surveys. ,vol. 28, pp. 17- 32 ,(1973) , 10.1070/RM1973V028N02ABEH001526
V. G. Kac, Infinite root systems, representations of graphs and invariant theory Inventiones Mathematicae. ,vol. 56, pp. 57- 92 ,(1980) , 10.1007/BF01403155
Ian Grant Macdonald, Symmetric functions and Hall polynomials ,(1979)