Functionals defined on piecewise rigid functions: Integral representation and $\Gamma$-convergence

作者: Manuel Friedrich , Francesco Solombrino

DOI: 10.1007/S00205-020-01493-8

关键词:

摘要: We analyze integral representation and $\Gamma$-convergence properties of functionals defined on \emph{piecewise rigid functions}, i.e., functions which are piecewise affine a Caccioppoli partition where the derivative in each component is constant lies set without rank-one connections. Such account for interfacial energies variational modeling materials locally show behavior. Our results based localization techniques careful adaption global method relaxation (Bouchitte et al. 1998, 2001) to this new setting, under rather general assumptions. They constitute first step towards investigation lower semicontinuity, relaxation, homogenization free-discontinuity problems spaces (generalized) bounded deformation.

参考文章(57)
A. Braides, Valeria Chiado' Piat, Integral representation results for functionals defined on SBV(?; Rm) Journal de Mathématiques Pures et Appliquées. ,vol. 75, pp. 595- 626 ,(1996)
J.L. Ericksen, Equilibrium Theory of Liquid Crystals Advances in Liquid Crystals. ,vol. 2, pp. 233- 298 ,(1976) , 10.1016/B978-0-12-025002-8.50012-9
Gianni Dal Maso, An Introduction to Γ-Convergence ,(1992)
Diego Pallara, Luigi Ambrosio, Nicola Fusco, Functions of Bounded Variation and Free Discontinuity Problems ,(2000)
Herbert Federer, Geometric Measure Theory ,(1969)
Andrea Braides, Anneliese Defranceschi, Homogenization of Multiple Integrals ,(1999)
Marcello Ponsiglione, Alessandro Giacomini, A $\Gamma$-convergence approach to stability of unilateral minimality properties arXiv: Analysis of PDEs. ,(2005)
Roberto Alicandro, , Andrea Braides, Marco Cicalese, , , Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint Networks and Heterogeneous Media. ,vol. 1, pp. 85- 107 ,(2006) , 10.3934/NHM.2006.1.85