Rolling balls and octonions

作者: A. A. Agrachev

DOI: 10.1134/S0081543807030030

关键词:

摘要: In this semi-expository paper we disclose hidden symmetries of a classical nonholonomic kinematic model and try to explain the geometric meaning basic invariants vector distributions.

参考文章(16)
Tonny Albert Springer, Ferdinand D Veldkamp, Octonions, Jordan Algebras and Exceptional Groups ,(2000)
A.A. Agrachev, Feedback-Invariant Optimal Control Theory and Differential Geometry, II. Jacobi Curves for Singular Extremals Journal of Dynamical and Control Systems. ,vol. 4, pp. 583- 604 ,(1998) , 10.1023/A:1021871218615
Velimir Jurdjevic, Geometric control theory ,(1996)
Yuri L. Sachkov, Andrei A. Agrachev, Control Theory from the Geometric Viewpoint ,(2004)
Richard Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications Mathematical Surveys and Monographs. ,vol. 91, ,(2006) , 10.1090/SURV/091
Paweł Nurowski, Differential equations and conformal structures Journal of Geometry and Physics. ,vol. 55, pp. 19- 49 ,(2005) , 10.1016/J.GEOMPHYS.2004.11.006
Robert L. Bryant, Lucas Hsu, Rigidity of integral curves of rank 2 distributions. Inventiones Mathematicae. ,vol. 114, pp. 435- 461 ,(1993) , 10.1007/BF01232676
A. A. Agrachev, I. Zelenko, Geometry of Jacobi Curves. I Journal of Dynamical and Control Systems. ,vol. 8, pp. 93- 140 ,(2002) , 10.1023/A:1013904801414