Discussion of "Riemann manifold Langevin and Hamiltonian Monte Carlo methods'' by M. Girolami and B. Calderhead

作者: Luke Bornn , Gareth W. Peters , Julien Cornebise

DOI:

关键词:

摘要: This technical report is the union of two contributions to discussion Read Paper "Riemann manifold Langevin and Hamiltonian Monte Carlo methods" by B. Calderhead M. Girolami, presented in front Royal Statistical Society on October 13th 2010 appear Journal Series The first comment establishes a parallel possible interactions with Adaptive methods. second exposes detailed study Riemannian Manifold (RMHMC) for weakly identifiable model presenting strong ridge its geometry.

参考文章(19)
Keith R. Hayes, Gareth W. Peters, Geoff R. Hosack, Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo (AdPMCMC) arXiv: Methodology. ,(2010)
Christophe Andrieu, Arnaud Doucet, Roman Holenstein, Particle Markov chain Monte Carlo methods Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 72, pp. 269- 342 ,(2010) , 10.1111/J.1467-9868.2009.00736.X
Yves Atchadé, Gersende Fort, Eric Moulines, Pierre Priouret, Adaptive Markov chain Monte Carlo: theory and methods Bayesian Time Series Models. pp. 32- 51 ,(2011) , 10.1017/CBO9780511984679.003
Radford M. Neal, Annealed importance sampling Statistics and Computing. ,vol. 11, pp. 125- 139 ,(2001) , 10.1023/A:1008923215028
Charles J. Geyer, Markov Chain Monte Carlo Maximum Likelihood Interface Foundation of North America. ,(1991)
JEAN-MARIE CORNUET, JEAN-MICHEL MARIN, ANTONIETTA MIRA, CHRISTIAN P. ROBERT, Adaptive Multiple Importance Sampling Scandinavian Journal of Statistics. ,vol. 39, pp. 798- 812 ,(2012) , 10.1111/J.1467-9469.2011.00756.X
Radford M. Neal, MCMC Using Hamiltonian Dynamics arXiv: Computation. pp. 139- 188 ,(2011) , 10.1201/B10905-10
Heikki Haario, Eero Saksman, Johanna Tamminen, An adaptive Metropolis algorithm Bernoulli. ,vol. 7, pp. 223- 242 ,(2001) , 10.2307/3318737
Sylvia. Richardson, Peter J. Green, On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) Journal of the Royal Statistical Society: Series B (Statistical Methodology). ,vol. 59, pp. 731- 792 ,(1997) , 10.1111/1467-9868.00095