Numerical differentiation of implicitly defined space curves

作者: W. Mackens

DOI: 10.1007/BF02259095

关键词:

摘要: In this note we develop a simple finite differencing device to calculate approximations of derivativesx′(0),x″(0),x (3)(0), … regular solution curvesx: ℜ ∋s →x(s) ∈ ℜ n nonlinear systems equationsg(x)=0,g∈C k (ℜ n + 1, ) without having compute points on the arcx(s). The derivative vectorsx′(0),x″(0),x (3)(0),… can be used in numerical approximation setg −1(0) two ways. On one hand they applied construct higher order predictors predictor-corrector branch following procedures. other serve as determining basis functions Reduced Basis Method. performance method is demonstrated by some examples.

参考文章(12)
E. L. Allgower, K. Georg, Predictor-Corrector and Simplicial Methods for Approximating Fixed Points and Zero Points of Nonlinear Mappings Mathematical Programming The State of the Art. pp. 15- 56 ,(1983) , 10.1007/978-3-642-68874-4_2
J. P. Fink, W. C. Rheinboldt, On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik. ,vol. 63, pp. 21- 28 ,(1983) , 10.1002/ZAMM.19830630105
Hubert Schwetlick, Jürgen Cleve, Higher order predictors and adaptive steplength control in path following algorithms SIAM Journal on Numerical Analysis. ,vol. 24, pp. 1382- 1393 ,(1987) , 10.1137/0724089
Werner C. Rheinboldt, Solution Fields of Nonlinear Equations and Continuation Methods SIAM Journal on Numerical Analysis. ,vol. 17, pp. 221- 237 ,(1980) , 10.1137/0717020
T. A. Porsching, Estimation of the error in the reduced basis method solution of nonlinear equations Mathematics of Computation. ,vol. 45, pp. 487- 496 ,(1985) , 10.1090/S0025-5718-1985-0804937-0
Roland Bulirsch, Josef Stoer, Introduction To Numerical Analysis ,(1956)