A fuzzy functional network for nonlinear regression problems

作者: Matteo Gaeta , Vincenzo Loia , Stefania Tomasiello

DOI: 10.1504/IJKESDP.2014.069290

关键词:

摘要: This paper introduces functional networks in a fuzzy environment. We formally define network for application some regression problems and prove sufficient condition on the solution of our model. Several numerical examples, based simulated data literature data, show good performance approach: solutions seem not sensitive to outliers, without using large training datasets.

参考文章(43)
Muhammet Hilmi Nisanci, Yavuz Cengiz, Ovunc Polat, Antonio Orlandi, Alistair Duffy, General regression neural network approach to prediction of electric field level in the reverberation chamber International Journal of Reasoning-based Intelligent Systems. ,vol. 2, pp. 168- 175 ,(2010) , 10.1504/IJRIS.2010.036862
Emad A. El-Sebakhy, New Computational Intelligence Paradigm for Estimating the Software Project Effort advanced information networking and applications. pp. 621- 627 ,(2008) , 10.1109/WAINA.2008.257
Aivars Celmiņš, A Practical Approach to Nonlinear Fuzzy Regression Siam Journal on Scientific and Statistical Computing. ,vol. 12, pp. 521- 546 ,(1991) , 10.1137/0912029
Donald G. Watts, David A. Ratkowsky, Nonlinear regression modeling : a unified practical approach Technometrics. ,vol. 26, pp. 190- ,(1984) , 10.2307/1268115
E. Castillo, J. M. Gutiírrez, A. Cobo, C. Castillo, A Minimax Method for Learning Functional Networks Neural Processing Letters. ,vol. 11, pp. 39- 49 ,(2000) , 10.1023/A:1009628031942
Hideo Tanaka, Fuzzy data analysis by possibilistic linear models Fuzzy Sets and Systems. ,vol. 24, pp. 363- 376 ,(1987) , 10.1016/0165-0114(87)90033-9
K. Y. Chan, C. K. Kwong, T. S. Dillon, K. Y. Fung, An intelligent fuzzy regression approach for affective product design that captures nonlinearity and fuzziness Journal of Engineering Design. ,vol. 22, pp. 523- 542 ,(2011) , 10.1080/09544820903550924
Zhiwei Xu, T.M. Khoshgoftaar, E.B. Allen, Prediction of software faults using fuzzy nonlinear regression modeling high assurance systems engineering. pp. 281- 290 ,(2000) , 10.1109/HASE.2000.895473
R. E. Bellman, L. A. Zadeh, Decision-making in a fuzzy environment ,(1970)
Vasantha Kalyani David, S. Rajasekaran, Pattern Recognition Using Neural and Functional Networks ,(2008)