Exp-Function Method for Duffing Equation and New Solutions of (2+1) Dimensional Dispersive Long Wave Equations

作者: Norhashidah Hj. Mohd. Ali , M. Ali Akbar

DOI: 10.3968/J.PAM.1925252820120102.003

关键词:

摘要: In this paper, the general solutions of Duffing equation with third degree nonlinear term is obtain using Exp-function method. Using and its solution, new exact solution free parameter arbitrary functions (2+1) dimensional dispersive long wave are obtained. Setting parameters as special values, hyperbolic well trigonometric function also derived. With aid symbolic computation, method serves an effective tool in solving equations under study. Key words: method; equation; Exact solutions; Nonlinear evolution

参考文章(43)
SA El-Wakil, MA Madkour, MA Abdou, None, Application of Exp-function method for nonlinear evolution equations with variable coefficients Physics Letters A. ,vol. 369, pp. 62- 69 ,(2007) , 10.1016/J.PHYSLETA.2007.04.075
Ji-Huan He, Variational iteration method – a kind of non-linear analytical technique: some examples International Journal of Non-linear Mechanics. ,vol. 34, pp. 699- 708 ,(1999) , 10.1016/S0020-7462(98)00048-1
S. D. Zhu, EXP-FUNCTION METHOD FOR THE HYBRID-LATTICE SYSTEM International Journal of Nonlinear Sciences and Numerical Simulation. ,vol. 8, pp. 461- 464 ,(2007) , 10.1515/IJNSNS.2007.8.3.461
Sheng Zhang, New exact solutions of the KdV–Burgers–Kuramoto equation Physics Letters A. ,vol. 358, pp. 414- 420 ,(2006) , 10.1016/J.PHYSLETA.2006.05.071
Ji-Huan He, Application of homotopy perturbation method to nonlinear wave equations Chaos, Solitons & Fractals. ,vol. 26, pp. 695- 700 ,(2005) , 10.1016/J.CHAOS.2005.03.006
Sirendaoreji, Sun Jiong, Auxiliary equation method for solving nonlinear partial differential equations Physics Letters A. ,vol. 309, pp. 387- 396 ,(2003) , 10.1016/S0375-9601(03)00196-8