Sentiment-Guided Adversarial Learning for Stock Price Prediction

作者: Sou-Cheng T. Choi , Haoran Wang , Jinyang Li , Yiwei Zhang

DOI: 10.3389/FAMS.2021.601105

关键词:

摘要: Prediction of stock prices or trends have attracted financial researchers' attention for many years. Recently, machine learning models such as neural networks have significantly …

参考文章(18)
Ayodele Ariyo Adebiyi, Aderemi Oluyinka Adewumi, Charles Korede Ayo, Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction Journal of Applied Mathematics. ,vol. 2014, pp. 1- 7 ,(2014) , 10.1155/2014/614342
Robert T. Clemen, Combining forecasts: A review and annotated bibliography International Journal of Forecasting. ,vol. 5, pp. 559- 583 ,(1989) , 10.1016/0169-2070(89)90012-5
Fei Tony Liu, Kai Ming Ting, Zhi-Hua Zhou, Isolation-Based Anomaly Detection ACM Transactions on Knowledge Discovery from Data. ,vol. 6, pp. 1- 39 ,(2012) , 10.1145/2133360.2133363
Wei Huang, Yoshiteru Nakamori, Shou-Yang Wang, Forecasting stock market movement direction with support vector machine Computers & Operations Research. ,vol. 32, pp. 2513- 2522 ,(2005) , 10.1016/J.COR.2004.03.016
Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory Neural Computation. ,vol. 9, pp. 1735- 1780 ,(1997) , 10.1162/NECO.1997.9.8.1735
Ju-Jie Wang, Jian-Zhou Wang, Zhe-George Zhang, Shu-Po Guo, Stock index forecasting based on a hybrid model Omega-international Journal of Management Science. ,vol. 40, pp. 758- 766 ,(2012) , 10.1016/J.OMEGA.2011.07.008
Rob J. Hyndman, Yeasmin Khandakar, Automatic Time Series Forecasting: The forecast Package for R Journal of Statistical Software. ,vol. 27, pp. 1- 22 ,(2008) , 10.18637/JSS.V027.I03
T. Cover, P. Hart, Nearest neighbor pattern classification IEEE Transactions on Information Theory. ,vol. 13, pp. 21- 27 ,(1967) , 10.1109/TIT.1967.1053964
Johan Bollen, Huina Mao, Xiaojun Zeng, Twitter mood predicts the stock market. Journal of Computational Science. ,vol. 2, pp. 1- 8 ,(2011) , 10.1016/J.JOCS.2010.12.007
Ilya Sutskever, Ian J. Goodfellow, Gregory S. Corrado, Michael Isard, Matthieu Devin, Vincent Vanhoucke, Martin Wicke, Manjunath Kudlur, Rajat Monga, Vijay Vasudevan, Geoffrey Irving, Yangqing Jia, Fernanda B. Viégas, Kunal Talwar, Martin Wattenberg, Ashish Agarwal, Martín Abadi, Yuan Yu, Rafal Józefowicz, Craig Citro, Sherry Moore, Paul Barham, Benoit Steiner, Pete Warden, Josh Levenberg, Derek Gordon Murray, Paul A. Tucker, Jonathon Shlens, Jeffrey Dean, Xiaoqiang Zheng, Chris Olah, Andy Davis, Dan Mané, Mike Schuster, Sanjay Ghemawat, Andrew Harp, Oriol Vinyals, Eugene Brevdo, Zhifeng Chen, Lukasz Kaiser, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems arXiv: Distributed, Parallel, and Cluster Computing. ,(2015)