Automatic detection of large pulmonary solid nodules in thoracic CT images

作者: Arnaud AA Setio , Colin Jacobs , Jaap Gelderblom , Bram van Ginneken , None

DOI: 10.1118/1.4929562

关键词:

摘要: Purpose: Current computer-aided detection (CAD) systems for pulmonary nodules in computed tomography (CT) scans have a good performance relatively small nodules, but often fail to detect the much rarer larger which are more likely be cancerous. We present novel CAD system specifically designed solid than 10 mm. Methods: The proposed pipeline is initiated by three-dimensional lung segmentation algorithm optimized include large attached pleural wall via morphological processing. An additional preprocessing used mask out structures outside space ensure that and parenchymal similar appearance. Next, nodule candidates obtained multistage process of thresholding operations, both smaller candidates. After segmenting each candidate, set 24 features based on intensity, shape, blobness, spatial context computed. A radial basis support vector machine (SVM) classifier was classify candidates, evaluated using ten-fold cross-validation full publicly available image database consortium database. Results: reaches sensitivity 98.3% (234/238) 94.1% (224/238) at an average 4.0 1.0 false positives/scan, respectively. Conclusions: authors conclude dedicated can identify vast majority highly suspicious lesions thoracic CT with number positives.

参考文章(39)
Kyung Nyeo Jeon, Jin Mo Goo, Chang Hyun Lee, Youkyung Lee, Ji Yung Choo, Nyoung Keun Lee, Mi-Suk Shim, In Sun Lee, Kwang Gi Kim, David S. Gierada, Kyongtae T. Bae, Computer-aided nodule detection and volumetry to reduce variability between radiologists in the interpretation of lung nodules at low-dose screening computed tomography. Investigative Radiology. ,vol. 47, pp. 457- 461 ,(2012) , 10.1097/RLI.0B013E318250A5AA
, Reduced lung-cancer mortality with low-dose computed tomographic screening. The New England Journal of Medicine. ,vol. 365, pp. 395- 409 ,(2011) , 10.1056/NEJMOA1102873
Qiang Li, Shusuke Sone, Kunio Doi, Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Medical Physics. ,vol. 30, pp. 2040- 2051 ,(2003) , 10.1118/1.1581411
Niccolò Camarlinghi, Ilaria Gori, Alessandra Retico, Roberto Bellotti, Paolo Bosco, Piergiorgio Cerello, Gianfranco Gargano, Ernesto Lopez Torres, Rosario Megna, Marco Peccarisi, Maria Evelina Fantacci, Combination of computer-aided detection algorithms for automatic lung nodule identification computer assisted radiology and surgery. ,vol. 7, pp. 455- 464 ,(2012) , 10.1007/S11548-011-0637-6
F. Beyer, L. Zierott, E. M. Fallenberg, K. U. Juergens, J. Stoeckel, W. Heindel, D. Wormanns, Comparison of sensitivity and reading time for the use of computer-aided detection (CAD) of pulmonary nodules at MDCT as concurrent or second reader European Radiology. ,vol. 17, pp. 2941- 2947 ,(2007) , 10.1007/S00330-007-0667-1
Binsheng Zhao, Denise R. Aberle, Claudia I. Henschke, Eric A. Hoffman, Ella A. Kazerooni, Heber MacMahon, Edwin J. R. van Beek, David Yankelevitz, Alberto M. Biancardi, Peyton H. Bland, Matthew S. Brown, Roger M. Engelmann, Gary E. Laderach, Daniel Max, Richard C. Pais, David P.-Y. Qing, Rachael Y. Roberts, Amanda R. Smith, Adam Starkey, Poonam Batra, Philip Caligiuri, Ali Farooqi, Gregory W. Gladish, C. Matilda Jude, Reginald F. Munden, Iva Petkovska, Leslie E. Quint, Lawrence H. Schwartz, Baskaran Sundaram, Lori E. Dodd, Charles Fenimore, David Gur, Nicholas Petrick, John Freymann, Justin Kirby, Brian Hughes, Alessi Vande Casteele, Sangeeta Gupte, Maha Sallam, Michael D. Heath, Michael H. Kuhn, Ekta Dharaiya, Richard Burns, David S. Fryd, Marcos Salganicoff, Vikram Anand, Uri Shreter, Stephen Vastagh, Barbara Y. Croft, Laurence P. Clarke, Samuel G. Armato, Geoffrey McLennan, Luc Bidaut, Michael F. McNitt-Gray, Charles R. Meyer, Anthony P. Reeves, The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Medical Physics. ,vol. 38, pp. 915- 931 ,(2011) , 10.1118/1.3528204
Temesguen Messay, Russell C. Hardie, Steven K. Rogers, A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Medical Image Analysis. ,vol. 14, pp. 390- 406 ,(2010) , 10.1016/J.MEDIA.2010.02.004
Heber MacMahon, John H. M. Austin, Gordon Gamsu, Christian J. Herold, James R. Jett, David P. Naidich, Edward F. Patz, Stephen J. Swensen, Guidelines for Management of Small Pulmonary Nodules Detected on CT Scans: A Statement from the Fleischner Society Radiology. ,vol. 237, pp. 395- 400 ,(2005) , 10.1148/RADIOL.2372041887
Daria Manos, Jean M. Seely, Jana Taylor, Joy Borgaonkar, Heidi C. Roberts, John R. Mayo, The Lung Reporting and Data System (LU-RADS): A Proposal for Computed Tomography Screening Canadian Association of Radiologists Journal. ,vol. 65, pp. 121- 134 ,(2014) , 10.1016/J.CARJ.2014.03.004