Oblique Multiwavelet Bases

作者: Akram Aldroubi

DOI: 10.1007/978-1-4612-2010-7_4

关键词:

摘要: The goal of this chapter is to introduce the new concept oblique wavelet and multiwavelet bases described in [1]. These contain, as special cases, orthogonal, semiorthogonal, biorthogonal theory wavelets multiwavelets [6, 9, 12, 13, 22]. main advantage that they give more flexibility choosing bases, without compromising fast filter bank implementation algorithms.

参考文章(24)
Yves Meyer, Opérateurs de Calderón-Zygmund Hermann. ,(1990)
T. N. T. Goodman, S. L. Lee, W. S. Tang, Wavelets in wandering subspaces Transactions of the American Mathematical Society. ,vol. 338, pp. 639- 654 ,(1993) , 10.1090/S0002-9947-1993-1117215-0
Gilbert Strang, Orthogonal multiwavelets with vanishing moments Optical Engineering. ,vol. 33, pp. 2104- 2107 ,(1994) , 10.1117/12.172247
Akram Aldroubi, Jill McGowan, Oblique and biorthogonal multiwavelet bases with fast-filtering algorithms SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation. ,vol. 2569, pp. 15- 26 ,(1995) , 10.1117/12.217567
Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L^2(R) Transactions of the American Mathematical Society. ,vol. 315, pp. 69- 87 ,(1989) , 10.1090/S0002-9947-1989-1008470-5
Charles K. Chui, Jian-zhong Wang, On compactly supported spline wavelets and a duality principle Transactions of the American Mathematical Society. ,vol. 330, pp. 903- 915 ,(1992) , 10.1090/S0002-9947-1992-1076613-3
Akram Aldroubi, Oblique and Hierarchical Multiwavelet Bases Applied and Computational Harmonic Analysis. ,vol. 4, pp. 231- 263 ,(1997) , 10.1006/ACHA.1997.0211
Albert Cohen, Ingrid Daubechies, Gerlind Plonka, Regularity of refinable function vectors Journal of Fourier Analysis and Applications. ,vol. 3, pp. 295- 324 ,(1997) , 10.1007/BF02649113
Pierre Gilles Lemarié-Rieusset, Yves Meyer, Ondelettes et bases hilbertiennes. Revista Matematica Iberoamericana. ,vol. 2, pp. 1- 18 ,(1986) , 10.4171/RMI/22
Akram Aldroubi, Michael Unser, Families of multiresolution and wavelet spaces with optimal properties Numerical Functional Analysis and Optimization. ,vol. 14, pp. 417- 446 ,(1993) , 10.1080/01630569308816532