An image segmentation method of a modified SPCNN based on human visual system in medical images

作者: Jing Lian , Zhen Yang , Wenhao Sun , Yanan Guo , Li Zheng

DOI: 10.1016/J.NEUCOM.2018.12.007

关键词:

摘要: Abstract An image segmentation method of a modified simplified pulse-coupled neural network (MSPCNN) based on human visual system (HVS) is proposed for medical images. The successfully determines the stimulus input MSPCNN according to characteristics PCNN and HVS. In order accomplish goal, we attempt deduce sub-intensity range central neurons firing by introducing neighboring matrix Q calculating intensity distribution new MSPCNN(NMSPCNN), then reveal way how parameter Sint generates Sioij closer Besides, try substitute above into extract more suitable lesions contrast prevalent models, has higher accuracy rates lower computational complexity because setting method. Finally, good comparing with state-of-the-art methods better performance, presenting overall metric OEM MIAS 0.8784, DDSM 0.8606 gallstones 0.8585.

参考文章(50)
Zhaobin Wang, Shuai Wang, Ying Zhu, Yide Ma, Review of Image Fusion Based on Pulse-Coupled Neural Network Archives of Computational Methods in Engineering. ,vol. 23, pp. 659- 671 ,(2016) , 10.1007/S11831-015-9154-Z
L. Kinnard, S.-C.B. Lo, P. Wang, M.T. Freedman, M. Chouikha, Automatic segmentation of mammographic masses using fuzzy shadow and maximum-likelihood analysis international symposium on biomedical imaging. pp. 241- 244 ,(2002) , 10.1109/ISBI.2002.1029238
Kun Zhan, Jinhui Shi, Qiaoqiao Li, Jicai Teng, Mingying Wang, Image segmentation using fast linking SCM international joint conference on neural network. pp. 1- 8 ,(2015) , 10.1109/IJCNN.2015.7280579
Shuo Wei, Qu Hong, Mengshu Hou, Letters: Automatic image segmentation based on PCNN with adaptive threshold time constant Neurocomputing. ,vol. 74, pp. 1485- 1491 ,(2011) , 10.1016/J.NEUCOM.2011.01.005
P.K Sahoo, S Soltani, A.K.C Wong, A survey of thresholding techniques Graphical Models \/graphical Models and Image Processing \/computer Vision, Graphics, and Image Processing. ,vol. 41, pp. 233- 260 ,(1988) , 10.1016/0734-189X(88)90022-9
C. J. Bartleson, E. J. Breneman, Brightness Perception in Complex Fields Journal of the Optical Society of America. ,vol. 57, pp. 953- 957 ,(1967) , 10.1364/JOSA.57.000953
Shahrooz Faghih Roohi, Reza Aghaeizadeh Zoroofi, 4D statistical shape modeling of the left ventricle in cardiac MR images computer assisted radiology and surgery. ,vol. 8, pp. 335- 351 ,(2013) , 10.1007/S11548-012-0787-1
Henrik Berg, Roland Olsson, Thomas Lindblad, José Chilo, Automatic design of pulse coupled neurons for image segmentation Neurocomputing. ,vol. 71, pp. 1980- 1993 ,(2008) , 10.1016/J.NEUCOM.2007.10.018
Yue Gao, Meng Wang, Zheng-Jun Zha, Jialie Shen, Xuelong Li, Xindong Wu, Visual-Textual Joint Relevance Learning for Tag-Based Social Image Search IEEE Transactions on Image Processing. ,vol. 22, pp. 363- 376 ,(2013) , 10.1109/TIP.2012.2202676
Min Dong, Xiangyu Lu, Yide Ma, Yanan Guo, Yurun Ma, Keju Wang, An Efficient Approach for Automated Mass Segmentation and Classification in Mammograms Journal of Digital Imaging. ,vol. 28, pp. 613- 625 ,(2015) , 10.1007/S10278-015-9778-4