A metapopulation model with local extinction probabilities that evolve over time

作者: Y. S. Chan , R. McVinish , P. K. Pollett

DOI:

关键词:

摘要: We study a variant of Hanski's incidence function model that accounts for the evolution over time landscape characteristics which affect persistence local populations. In particular, we allow probability extinction to evolve according Markov chain. This covers widely studied case where patches are classified as being either suitable or unsuitable occupancy. Threshold conditions population obtained using an approximating deterministic is realized in limit number becomes large.

参考文章(55)
S. McKinlay, K. Borovkov, On explicit form of the stationary distributions for a class of bounded Markov chains Journal of Applied Probability. ,vol. 53, pp. 231- 243 ,(2016) , 10.1017/JPR.2015.21
Otso Ovaskainen, Ilkka Hanski, 4 – Metapopulation Dynamics in Highly Fragmented Landscapes Ecology, Genetics and Evolution of Metapopulations. pp. 73- 103 ,(2004) , 10.1016/B978-012323448-3/50006-4
Mark Grigorievich Krein, None, Linear operators leaving invariant a cone in a Banach space Amer. Math. Soc. Transl. Ser. I. ,vol. 10, pp. 199- 325 ,(1950)
Stephanie A. Pulsford, David B. Lindenmayer, Don A. Driscoll, A succession of theories: purging redundancy from disturbance theory Biological Reviews. ,vol. 91, pp. 148- 167 ,(2016) , 10.1111/BRV.12163
H. R. Akçakaya, L. R. Ginzburg, Ecological Risk Analysis for Single and Multiple Populations Species Conservation: A Population-Biological Approach. pp. 73- 87 ,(1991) , 10.1007/978-3-0348-6426-8_6
Thomas M. Liggett, Interacting Particle Systems ,(1985)
Richard Durrett, Random graph dynamics ,(2007)
Ludwig Arnold, Random Dynamical Systems ,(1998)
William L. Baker, A review of models of landscape change Landscape Ecology. ,vol. 2, pp. 111- 133 ,(1989) , 10.1007/BF00137155
R. McVinish, P.K. Pollett, The deterministic limit of a stochastic logistic model with individual variation Bellman Prize in Mathematical Biosciences. ,vol. 241, pp. 109- 114 ,(2013) , 10.1016/J.MBS.2012.10.001