Weighted rearrangement inequalities for local sharp maximal functions

作者: Andrei K. Lerner

DOI: 10.1090/S0002-9947-04-03598-6

关键词:

摘要: Several weighted rearrangement inequalities for uncentered and centered local sharp functions are proved. These results applied to obtain new weak-type strong-type estimates singular integrals. A self-improving property of function is established.

参考文章(30)
Colin Bennett, Ronald A. DeVore, Robert Sharpley, Weak-L ∞ and BMO The Annals of Mathematics. ,vol. 113, pp. 601- ,(1981) , 10.2307/2006999
Josefina Alvarez, Carlos Pérez Moreno, Estimates with A∞ weights for various singular integral operators Bollettino Della Unione Matematica Italiana. ,vol. 8, pp. 123- 133 ,(1994)
Henry Helson, Harmonic Analysis ,(1983)
B Jawerth, A Torchinsky, Local sharp maximal functions Journal of Approximation Theory. ,vol. 43, pp. 231- 270 ,(1985) , 10.1016/0021-9045(85)90102-9
N. M. Rice, K. M. Chong, Equimeasurable rearrangements of functions Queen's University. ,(1971)
A. Cordoba, C. Fefferman, A weighted norm inequality for singular integrals Studia Mathematica. ,vol. 57, pp. 97- 101 ,(1976) , 10.4064/SM-57-1-97-101
Lech Maligranda, Natan Ya. Krugljak, Irina U. Asekritova, Lars-Erik Persson, Distribution and rearrangement estimates of the maximal function and interpolation Studia Mathematica. ,vol. 124, pp. 107- 132 ,(1997)
M Sharpley, C. Bennett, Interpolation of operators ,(1987)
R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals Studia Mathematica. ,vol. 51, pp. 241- 250 ,(1974) , 10.4064/SM-51-3-241-250
J. Michael Wilson, $L^{p}$ weighted norm inequalities for the square function, $0 < p < 2$ Illinois Journal of Mathematics. ,vol. 33, pp. 361- 366 ,(1989) , 10.1215/IJM/1255988648