Optimal growth and recursive utility: Phase diagram analysis

作者: F. R. Chang

DOI: 10.1007/BF02207773

关键词:

摘要: The dynamics of the one-sector optimal growth model with recursive utility is analyzed through use a phase diagram. steady state uniquely exists and saddle point. An increase in recursivity lowers both steady-state capital consumption. differs from constant discount rate that reduction population or Hicks-neutral technical progress increases consumption but not necessarily capital.

参考文章(21)
N. V. Krylov, Controlled diffusion processes ,(1980)
Robert A Becker, John H Boyd, Bom Yong Sung, Recursive utility and optimal capital accumulation. I. Existence Journal of Economic Theory. ,vol. 47, pp. 76- 100 ,(1989) , 10.1016/0022-0531(89)90104-X
Michael D. Intriligator, Mathematical optimization and economic theory ,(1971)
Larry G Epstein, A simple dynamic general equilibrium model Journal of Economic Theory. ,vol. 41, pp. 68- 95 ,(1987) , 10.1016/0022-0531(87)90006-8
Henry Y. Wan Jr., Optimal Saving Programs under Intertemporally Dependent Preferences International Economic Review. ,vol. 11, pp. 521- 547 ,(1970) , 10.2307/2525330
Harl E. Ryder, Geoffrey M. Heal, Optimal Growth with Intertemporally Dependent Preferences The Review of Economic Studies. ,vol. 40, pp. 1- 31 ,(1973) , 10.2307/2296736
Darrell Duffie, Larry G. Epstein, Stochastic differential utility Econometrica. ,vol. 60, pp. 353- 394 ,(1992) , 10.2307/2951600
Robert A. Becker, On the Long-Run Steady State in a Simple Dynamic Model of Equilibrium with Heterogeneous Households Quarterly Journal of Economics. ,vol. 95, pp. 375- 382 ,(1980) , 10.2307/1885506
Peter A. Streufert, Stationary Recursive Utility and Dynamic Programming under the Assumption of Biconvergence The Review of Economic Studies. ,vol. 57, pp. 79- 97 ,(1990) , 10.2307/2297544