A converse inequality of higher order weighted arithmetic and geometric means of positive definite operators

作者: Sejong Kim , Yongdo Lim

DOI: 10.1016/J.LAA.2007.05.028

关键词:

摘要: In this paper we consider weighted arithmetic and geometric means of higher orders constructed by the symmetrization method appeared in Ando–Li–Mathias’s definition multi-variable arithmetic–geometric mean inequality order version. We establish a converse weighed via Specht ratio.

参考文章(10)
Vladimir Volenec, Josip Pečarić, Mladen Alić, P.S. Bullen, On the geometric-arithmetic mean inequality for matrices Mathematical Communications. ,vol. 2, pp. 125- 128 ,(1997)
G. Corach, H. Porta, L. Recht, Convexity of the geodesic distance on spaces of positive operators Illinois Journal of Mathematics. ,vol. 38, pp. 87- 94 ,(1994) , 10.1215/IJM/1255986889
J. Pečarić, Power matrix means and related inequalities Mathematical Communications. ,vol. 1, pp. 91- 110 ,(1996)
Dénes Petz, Róbert Temesi, Means of Positive Numbers and Matrices SIAM Journal on Matrix Analysis and Applications. ,vol. 27, pp. 712- 720 ,(2005) , 10.1137/050621906
Jimmie Lawson, Yongdo Lim, Symmetric spaces with convex metrics Forum Mathematicum. ,vol. 19, pp. 571- 602 ,(2007) , 10.1515/FORUM.2007.023
Jimmie Lawson, Yongdo Lim, A general framework for extending means to higher orders Colloquium Mathematicum. ,vol. 113, pp. 191- 221 ,(2008) , 10.4064/CM113-2-3
Takeaki Yamazaki, An extension of Kantorovich inequality to n-operators via the geometric mean by Ando–Li–Mathias Linear Algebra and its Applications. ,vol. 416, pp. 688- 695 ,(2006) , 10.1016/J.LAA.2005.12.013
A. C. Thompson, ON CERTAIN CONTRACTION MAPPINGS IN A PARTIALLY ORDERED VECTOR SPACE Proceedings of the American Mathematical Society. ,vol. 14, pp. 438- 443 ,(1963) , 10.1090/S0002-9939-1963-0149237-7
Jun Ichi Fujii, Yuki Seo, Masaru Tominaga, Kantorovich type operator inequalities via the Specht ratio Linear Algebra and its Applications. ,vol. 377, pp. 69- 81 ,(2004) , 10.1016/J.LAA.2003.07.008
Dénes Petz, Means of positive matrices: Geometry and a conjecture ⁄ Annales Mathematicae et Informaticae. ,vol. 32, pp. 129- 139 ,(2005)