PROPERTIES OF THE NORMED CONE OF SEMI-LIPSCHITZ FUNCTIONS

作者: Salvador Romaguera , Manuel Sanchis

DOI: 10.1007/S10474-005-0208-9

关键词:

摘要: We obtain several properties of the normed cone semi-Lipschitz functions defined on a quasi-metric space (X;d) that vanish at fixed point x0 2 X. For instance, we prove it is both bicomplete and right K-sequentially complete, unit ball compact with respect to topology quasi- uniform convergence. Furthermore, has structure Banach if only metric space.

参考文章(15)
Fletcher, Quasi-uniform spaces ,(1982)
Klaus Keimel, Walter Roth, Ordered cones and approximation ,(1992)
Manuel Sanchis, Salvador Romaguera, Applications of utility functions defined on quasi-metric spaces Journal of Mathematical Analysis and Applications. ,vol. 283, pp. 219- 235 ,(2003) , 10.1016/S0022-247X(03)00285-3
I. L. Reilly, P. V. Subrahmanyam, M. K. Vamanamurthy, Cauchy sequences in quasi-pseudo-metric spaces Monatshefte für Mathematik. ,vol. 93, pp. 127- 140 ,(1982) , 10.1007/BF01301400
J. A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions Transactions of the American Mathematical Society. ,vol. 148, pp. 147- 169 ,(1970) , 10.1090/S0002-9947-1970-0415289-8
Ralph Kopperman, All topologies come from generalized metrics American Mathematical Monthly. ,vol. 95, pp. 89- 97 ,(1988) , 10.2307/2323060
Andrej Nikolaevič Kolmogorov, Introductory Real Analysis ,(1970)
Salvador Romaguera, Manuel Sanchis, Semi-Lipschitz Functions and Best Approximation in Quasi-Metric Spaces Journal of Approximation Theory. ,vol. 103, pp. 292- 301 ,(2000) , 10.1006/JATH.1999.3439
T. Yung Kong, Ralph Kopperman, Paul R. Meyer, A topological approach to digital topology American Mathematical Monthly. ,vol. 98, pp. 901- 917 ,(1991) , 10.2307/2324147