Crystal structure of the human centromeric nucleosome containing CENP-A

作者: Hiroaki Tachiwana , Wataru Kagawa , Tatsuya Shiga , Akihisa Osakabe , Yuta Miya

DOI: 10.1038/NATURE10258

关键词:

摘要: In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment. Centromeres specify the kinetochore formation on individual chromosomes, epigenetically marked assembly of nucleosomes containing centromere-specific histone H3 variant, CENP-A. Although underlying mechanism unclear, centromere inheritance probably dictated architecture centromeric nucleosome. Here we report crystal structure human nucleosome CENP-A its cognate α-satellite DNA derivative (147 base pairs). nucleosome, wrapped around octamer, consisting two each histones H2A, H2B, H4 CENP-A, in a left-handed orientation. However, unlike canonical only central 121 pairs visible. The thirteen from both ends invisible structure, αN helix shorter than that H3, known to be important orientation A structural comparison revealed contains extra amino acid residues (Arg 80 Gly 81) loop 1 region, completely exposed solvent. Mutations reduced retention at centromeres cells. Therefore, may function stabilizing chromatin possibly providing binding site trans-acting factors. provides first atomic-resolution picture

参考文章(40)
Michael D. Blower, Gary H. Karpen, The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions Nature Cell Biology. ,vol. 3, pp. 730- 739 ,(2001) , 10.1038/35087045
Zbyszek Otwinowski, Wladek Minor, Processing of X-ray diffraction data collected in oscillation mode Methods in Enzymology. ,vol. 276, pp. 307- 326 ,(1997) , 10.1016/S0076-6879(97)76066-X
Pamela N. Dyer, Raji S. Edayathumangalam, Cindy L. White, Yunhe Bao, Srinivas Chakravarthy, Uma M. Muthurajan, Karolin Luger, Reconstitution of Nucleosome Core Particles from Recombinant Histones and DNA Methods in Enzymology. ,vol. 375, pp. 23- 44 ,(2004) , 10.1016/S0076-6879(03)75002-2
Glatter O, Kratky O, Pilz I, Small Angle X-Ray Scattering ,(1982)
Paul B. Talbert, Steven Henikoff, Histone variants — ancient wrap artists of the epigenome Nature Reviews Molecular Cell Biology. ,vol. 11, pp. 264- 275 ,(2010) , 10.1038/NRM2861
T. Fujisawa, K. Inoue, T. Oka, H. Iwamoto, T. Uruga, T. Kumasaka, Y. Inoko, N. Yagi, M. Yamamoto, T. Ueki, Small‐angle X‐ray scattering station at the SPring‐8 RIKEN beamline Journal of Applied Crystallography. ,vol. 33, pp. 797- 800 ,(2000) , 10.1107/S002188980000131X
D. I. Svergun, Determination of the regularization parameter in indirect-transform methods using perceptual criteria Journal of Applied Crystallography. ,vol. 25, pp. 495- 503 ,(1992) , 10.1107/S0021889892001663
Iain M. Cheeseman, Arshad Desai, Molecular architecture of the kinetochore–microtubule interface Nature Reviews Molecular Cell Biology. ,vol. 9, pp. 33- 46 ,(2008) , 10.1038/NRM2310
Axel T Brünger, Paul D Adams, G Marius Clore, Warren L DeLano, Piet Gros, Ralf W Grosse-Kunstleve, J-S Jiang, John Kuszewski, Michael Nilges, Navraj S Pannu, Randy J Read, Luke M Rice, Thomas Simonson, Gregory L Warren, Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination Acta Crystallographica Section D-biological Crystallography. ,vol. 54, pp. 905- 921 ,(1998) , 10.1107/S0907444998003254
Collaborative Computational Project, Number 4, The CCP4 suite: programs for protein crystallography Acta Crystallographica Section D-biological Crystallography. ,vol. 50, pp. 760- 763 ,(1994) , 10.1107/S0907444994003112