Computational Modeling of the Spine

作者: Tobias Klinder , Samuel Kadoury , Cristian Lorenz

DOI: 10.1007/978-3-319-03813-1_11

关键词:

摘要: Modeling of the human spine requires extension from single object modeling to ensembles. The consists a constellation vertebrae where individual show complex shape. While most neighbouring look very similar, their shape changes significantly along spine. Due these challenges, more sophisticated model formulations are needed that go beyond vertebrae. In this article, we combine several high-level models into one common framework. represented as set covering shape, gradient and appearance information well relative location orientation. By encoding further anatomical representation vertebrae, e.g., important regions or significant landmarks, clinically relevant parameters can be easily derived models. is expressed sequence rigid transformations between different statistical methods used cover variability spinal curvatures. For selected applications vertebra labelling in limited field view scans segmentation both CT MRI, how comprehensive framework for an automatic image interpretation medical images Furthermore, problem change assessment osteoporotic fracture detection tackled with example CAD.

参考文章(45)
D.H. Ballard, Generalizing the hough transform to detect arbitrary shapes Pattern Recognition. ,vol. 13, pp. 714- 725 ,(1987) , 10.1016/0031-3203(81)90009-1
Yiqiang Zhan, Dewan Maneesh, Martin Harder, Xiang Sean Zhou, Robust MR spine detection using hierarchical learning and local articulated model medical image computing and computer assisted intervention. ,vol. 15, pp. 141- 148 ,(2012) , 10.1007/978-3-642-33415-3_18
Tobias Klinder, Cristian Lorenz, Jens von Berg, Sebastian P. M. Dries, Thomas Bülow, Jörn Ostermann, Automated model-based rib cage segmentation and labeling in CT images medical image computing and computer assisted intervention. ,vol. 10, pp. 195- 202 ,(2007) , 10.1007/978-3-540-75759-7_24
Tobias Klinder, Robin Wolz, Cristian Lorenz, Astrid Franz, Jörn Ostermann, Spine Segmentation Using Articulated Shape Models Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008. ,vol. 11, pp. 227- 234 ,(2008) , 10.1007/978-3-540-85988-8_28
Stefan Schmidt, Jörg Kappes, Martin Bergtholdt, Vladimir Pekar, Sebastian Dries, Daniel Bystrov, Christoph Schnörr, Spine Detection and Labeling Using a Parts-Based Graphical Model Lecture Notes in Computer Science. ,vol. 20, pp. 122- 133 ,(2007) , 10.1007/978-3-540-73273-0_11
A. K. Jerebko, G. P. Schmidt, X. Zhou, J. Bi, V. Anand, J. Liu, S. Schoenberg, I. Schmuecking, B. Kiefer, A. Krishnan, Robust parametric modeling approach based on domain knowledge for computer aided detection of vertebrae column metastases in MRI information processing in medical imaging. ,vol. 20, pp. 713- 724 ,(2007) , 10.1007/978-3-540-73273-0_59
Jun Ma, Le Lu, Yiqiang Zhan, Xiang Zhou, Marcos Salganicoff, Arun Krishnan, Hierarchical Segmentation and Identification of Thoracic Vertebra Using Learning-Based Edge Detection and Coarse-to-Fine Deformable Model Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. ,vol. 13, pp. 19- 27 ,(2010) , 10.1007/978-3-642-15705-9_3
Jason J. Corso, Raja’ S. Alomari, Vipin Chaudhary, Lumbar Disc Localization and Labeling with a Probabilistic Model on Both Pixel and Object Features Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008. ,vol. 11, pp. 202- 210 ,(2008) , 10.1007/978-3-540-85988-8_25
Jonathan Boisvert, Xavier Pennec, Hubert Labelle, Farida Cheriet, Nicholas Ayache, Principal Spine Shape Deformation Modes Using Riemannian Geometry and Articulated Models Articulated Motion and Deformable Objects. ,vol. 4069, pp. 346- 355 ,(2006) , 10.1007/11789239_36
Ben Glocker, J. Feulner, Antonio Criminisi, D. R. Haynor, E. Konukoglu, Automatic Localization and Identification of Vertebrae in Arbitrary Field-of-View CT Scans medical image computing and computer assisted intervention. ,vol. 15, pp. 590- 598 ,(2012) , 10.1007/978-3-642-33454-2_73