Some properties of fuzzy sets of type 2

作者: Masaharu Mizumoto , Kokichi Tanaka

DOI: 10.1016/S0019-9958(76)80011-3

关键词:

摘要: The concept of fuzzy sets type 2 has been defined by L. A. Zadeh as an extension ordinary sets. set can be characterized a membership function the grade (or grade) which is in unit interval [0, 1] rather than point 1]. This paper investigates algebraic structures grades under operations join ⊔, meet and negation ┐ are using principle, shows that convex form commutative semiring normal distributive lattice ⊔ ⊓. Moreover, properties slightly different from ⊓, respectively, briefly discussed.

参考文章(8)
Lotfi A. Zadeh, Fuzzy Logic and Its Application to Approximate Reasoning. ifip congress. pp. 591- 594 ,(1974)
A De Luca, S Termini, Algebraic properties of fuzzy sets Journal of Mathematical Analysis and Applications. ,vol. 40, pp. 373- 386 ,(1972) , 10.1016/0022-247X(72)90057-1
M. MIZUMOTO, K. TANAKA, FUZZY‐FUZZY AUTOMATA Kybernetes. ,vol. 5, pp. 107- 112 ,(1976) , 10.1108/EB005415
L. A. Zadeh, A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedges Journal of Cybernetics. ,vol. 2, pp. 4- 34 ,(1972) , 10.1080/01969727208542910
Joseph G. Brown, A note on fuzzy sets Information & Computation. ,vol. 18, pp. 32- 39 ,(1971) , 10.1016/S0019-9958(71)90288-9
J.A Goguen, L-fuzzy sets Journal of Mathematical Analysis and Applications. ,vol. 18, pp. 145- 174 ,(1967) , 10.1016/0022-247X(67)90189-8