Wiring of No-Signaling Boxes Decreases Maximal Correlation

作者: Salman Beigi , Amin Gohari

DOI:

关键词:

摘要: No-signaling boxes are the abstract objects for studying non-locality, and wirings local operations on space of no-signaling boxes. Although non-trivial examples known, there is no systematic way to study wirings. In particular, given a set boxes, we do not know general method prove that it closed under this paper define an invariant in terms so called hypercontractivity ribbon, certain subset real plane. We then show starting from some copies box, its ribbon can only expand That is, monotone same result another which first time call maximal correlation ribbon. conclude well-known measure correlation, when appropriately defined decrease These results provide us with constructing sets As application our results, conjecture about impossibility simulating isotropic each other. particular continuum

参考文章(35)
Manuel Forster, Bounds for nonlocality distillation protocols Physical Review A. ,vol. 83, pp. 062114- ,(2011) , 10.1103/PHYSREVA.83.062114
Abbas El Gamal, Young-Han Kim, Network Information Theory ,(2012)
Venkat Anantharam, Amin Aminzadeh Gohari, Sudeep Kamath, Chandra Nair, On Maximal Correlation, Hypercontractivity, and the Data Processing Inequality studied by Erkip and Cover arXiv: Information Theory. ,(2013)
Salman Beigi, Amin Gohari, Information Causality is a Special Point in the Dual of the Gray-Wyner Region arXiv: Quantum Physics. ,(2011)
Stefan Wolf, Dejan D. Dukaric, A Limit on Non-Locality Distillation arXiv: Quantum Physics. ,(2008)
Salman Beigi, Amin Gohari, On the Duality of Additivity and Tensorization arXiv: Information Theory. ,(2015)
R. M. Gray, A. D. Wyner, Source Coding for a Simple Network Bell System Technical Journal. ,vol. 53, pp. 1681- 1721 ,(1974) , 10.1002/J.1538-7305.1974.TB02812.X
Hans Gebelein, Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik. ,vol. 21, pp. 364- 379 ,(1941) , 10.1002/ZAMM.19410210604
A. Rényi, New version of the probabilistic generalization of the large sieve Acta Mathematica Hungarica. ,vol. 10, pp. 217- 226 ,(1959) , 10.1007/BF02063300
Sandu Popescu, Daniel Rohrlich, QUANTUM NONLOCALITY AS AN AXIOM Foundations of Physics. ,vol. 24, pp. 379- 385 ,(1994) , 10.1007/BF02058098