GPU-accelerated massive black hole binary parameter estimation with LISA

作者: Michael L. Katz , Sylvain Marsat , Alvin J. K. Chua , Stanislav Babak , Shane L. Larson

DOI: 10.1103/PHYSREVD.102.023033

关键词:

摘要: The Laser Interferometer Space Antenna (LISA) is slated for launch in the early 2030s. A main target of mission massive black hole binaries that have an expected detection rate $\ensuremath{\sim}20\text{ }\text{ }{\mathrm{yr}}^{\ensuremath{-}1}$. We present a parameter estimation analysis variety binaries. This performed with graphics processing unit (GPU) implementation comprising phenomhm waveform higher-order harmonic modes and aligned spins; fast frequency-domain LISA detector response function; GPU-native likelihood computation. computational performance achieved GPU shown to be 500 times greater than similar CPU implementation, which allows us analyze full noise-infused injections at realistic Fourier bin width tractable efficient amount time. With these computations, we study effect adding spins by testing different configurations injection, as well varied fixed during sampling. Within tests, examine three varying mass ratios, redshifts, sky locations, detector-frame total masses ranging over 3 orders magnitude. discuss correlations between ratios; unique spin posteriors larger binaries; constraints on parameters when fixing sampling, allowing compare previous analyses did not include spins.

参考文章(133)
Sebastian Khan, Sascha Husa, Mark Hannam, Frank Ohme, Michael Pürrer, Xisco Jiménez Forteza, Alejandro Bohé, Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era Physical Review D. ,vol. 93, pp. 044007- ,(2016) , 10.1103/PHYSREVD.93.044007
Louis J. Rubbo, Neil J. Cornish, The LISA response function Physical Review D. ,vol. 67, pp. 022001- ,(2002) , 10.1103/PHYSREVD.67.022001
Paul M. Goggans, Using Thermodynamic Integration to Calculate the Posterior Probability in Bayesian Model Selection Problems BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. ,vol. 707, pp. 59- 66 ,(2004) , 10.1063/1.1751356
Tyson B. Littenberg, Neil J. Cornish, Bayesian inference for spectral estimation of gravitational wave detector noise Physical Review D. ,vol. 91, pp. 084034- ,(2015) , 10.1103/PHYSREVD.91.084034
W. D. Vousden, W. M. Farr, I. Mandel, Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations Monthly Notices of the Royal Astronomical Society. ,vol. 455, pp. 1919- 1937 ,(2016) , 10.1093/MNRAS/STV2422
Sascha Husa, Bernard F. Schutz, Mark Hannam, Stanislav Babak, Resolving Super Massive Black Holes with LISA arXiv: General Relativity and Quantum Cosmology. ,(2008)
Matthew C. Edwards, Renate Meyer, Nelson Christensen, Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis Physical Review D. ,vol. 92, pp. 064011- ,(2015) , 10.1103/PHYSREVD.92.064011
Sean T. McWilliams, Ryan N. Lang, John G. Baker, James Ira Thorpe, Sky localization of complete inspiral-merger-ringdown signals for nonspinning massive black hole binaries Physical Review D. ,vol. 84, pp. 064003- ,(2011) , 10.1103/PHYSREVD.84.064003