Introduction to Multiplicative Fourier Transform Algorithm (MFTA)

作者: R. Tolimieri , Myoung An , Chao Lu

DOI: 10.1007/978-1-4757-3854-4_8

关键词:

摘要: The Cooley-Tukey FFT algorithm and its variants depend upon the existence of non-trivial divisors transform size N. These algorithms are called additive since they rely on subgroups group structure indexing set. A second approach to design FT depends multiplicative We appealed previously, in chapter 5, derivation Good-Thomas PFA.

参考文章(11)
Clive Temperton, Note a note on prime factor FFT algorithms Journal of Computational Physics. ,vol. 52, pp. 198- 204 ,(1983) , 10.1016/0021-9991(83)90024-4
Michael T Heideman, C Sidney Burrus, Multiplicative Complexity, Convolution, and the DFT ,(1988)
C.M. Rader, Discrete Fourier transforms when the number of data samples is prime Proceedings of the IEEE. ,vol. 56, pp. 1107- 1108 ,(1968) , 10.1109/PROC.1968.6477
D. Kolba, T. Parks, A prime factor FFT algorithm using high-speed convolution IEEE Transactions on Acoustics, Speech, and Signal Processing. ,vol. 25, pp. 281- 294 ,(1977) , 10.1109/TASSP.1977.1162973
Richard Tolimieri, Chao Lu, Robert W Johnson, Modified Winograd FFT algorithm and its variants for transform size N = pk and their implementations Advances in Applied Mathematics. ,vol. 10, pp. 228- 251 ,(1989) , 10.1016/0196-8858(89)90012-2
Ramesh C. Agarwal, James W. Cooley, Fourier transform and convolution subroutines for the IBM 3090 Vector facility Ibm Journal of Research and Development. ,vol. 30, pp. 145- 162 ,(1986) , 10.1147/RD.302.0145
S. Winograd, On computing the discrete Fourier transform Mathematics of Computation. ,vol. 32, pp. 175- 199 ,(1978) , 10.1090/S0025-5718-1978-0468306-4
R.C. Agarwal, J.W. Cooley, Vectorized mixed radix discrete Fourier transform algorithms Proceedings of the IEEE. ,vol. 75, pp. 1283- 1292 ,(1987) , 10.1109/PROC.1987.13880
I. Gertner, A new efficient algorithm to compute the two-dimensional discrete Fourier transform IEEE Transactions on Acoustics, Speech, and Signal Processing. ,vol. 36, pp. 1036- 1050 ,(1988) , 10.1109/29.1627