Convergence and performance analysis of the normalized LMS algorithm with uncorrelated Gaussian data

作者: M. Tarrab , A. Feuer

DOI: 10.1109/18.9768

关键词:

摘要: … Observation 3: xk being Gaussian with zero mean and (3.1) with (3.2) imply that the expected value of any function of gk, which is odd with respect to at least one entry3 of gk, is zero. …

参考文章(6)
L. Horowitz, K. Senne, Performance advantage of complex LMS for controlling narrow-band adaptive arrays IEEE Transactions on Acoustics, Speech, and Signal Processing. ,vol. 29, pp. 722- 736 ,(1981) , 10.1109/TASSP.1981.1163602
R. Bitmead, B. Anderson, Performance of adaptive estimation algorithms in dependent random environments IEEE Transactions on Automatic Control. ,vol. 25, pp. 788- 794 ,(1980) , 10.1109/TAC.1980.1102433
A. Feuer, E. Weinstein, Convergence analysis of LMS filters with uncorrelated Gaussian data IEEE Transactions on Acoustics, Speech, and Signal Processing. ,vol. 33, pp. 222- 230 ,(1985) , 10.1109/TASSP.1985.1164493
J. Nagumo, A. Noda, A learning method for system identification IEEE Transactions on Automatic Control. ,vol. 12, pp. 282- 287 ,(1967) , 10.1109/TAC.1967.1098599
N. Bershad, Analysis of the normalized LMS algorithm with Gaussian inputs IEEE Transactions on Acoustics, Speech, and Signal Processing. ,vol. 34, pp. 793- 806 ,(1986) , 10.1109/TASSP.1986.1164914