Supervised pattern recognition: the ideal method?

作者: M.P. Derde , D.L. Massart

DOI: 10.1016/S0003-2670(00)86293-5

关键词:

摘要: Abstract The different criteria that should be considered in selecting a supervised pattern recognition technique for particular application are discussed. An overview is given of the most important and frequently-used techniques extent to which they meet criteria. possibilities two rule-building expert systems also

参考文章(9)
D. Coomans, M. Derde, D.L. Massart, I. Broeckaert, Potential methods in pattern recognition : Part 3. Feature selection with ALLOC Analytica Chimica Acta. ,vol. 133, pp. 241- 250 ,(1981) , 10.1016/S0003-2670(01)83198-6
M.P. Derde, D.L. Massart, UNEQ: a disjoint modelling technique for pattern recognition based on normal distribution Analytica Chimica Acta. ,vol. 184, pp. 33- 51 ,(1986) , 10.1016/S0003-2670(00)86468-5
István Juricskay, Gábor E. Veress, PRIMA: a new pattern recognition method Analytica Chimica Acta. ,vol. 171, pp. 61- 76 ,(1985) , 10.1016/S0003-2670(00)84184-7
D. O. Loftsgaarden, C. P. Quesenberry, A nonparametric estimate of a multivariate density function Annals of Mathematical Statistics. ,vol. 36, pp. 1049- 1051 ,(1965) , 10.1214/AOMS/1177700079
Hilko van der Voet, Durk A. Doornbos, The improvement of SIMCA classification by using kernel density estimation Analytica Chimica Acta. ,vol. 161, pp. 115- 123 ,(1984) , 10.1016/S0003-2670(00)85783-9
Hilko vander Voet, Durk A. Doornbos, The improvement of SIMCA classification by using kernel density estimation Analytica Chimica Acta. ,vol. 161, pp. 125- 134 ,(1984) , 10.1016/S0003-2670(00)85784-0