An Autoregressive Model with Fuzzy Random Variables

作者: Dabuxilatu Wang

DOI: 10.1007/978-3-540-85027-4_48

关键词:

摘要: An autoregressive model is defined for fuzzy random variables under the concept of Frechet variance and covariance as well Gaussian variable. In some special case, by using Hukuhara difference between sets, conditions stationary solution a p-order process ( AR(p)) are extended to case data in manner conventional stochastic setting.

参考文章(20)
Volker Kr�tschmer, Probability theory in fuzzy sample spaces Metrika. ,vol. 60, pp. 167- 189 ,(2004) , 10.1007/S001840300303
Shyi-Ming Chen, Forecasting enrollments based on fuzzy time series Fuzzy Sets and Systems. ,vol. 81, pp. 311- 319 ,(1996) , 10.1016/0165-0114(95)00220-0
Madan L Puri, Dan A Ralescu, Fuzzy random variables Journal of Mathematical Analysis and Applications. ,vol. 114, pp. 409- 422 ,(1986) , 10.1016/0022-247X(86)90093-4
A. Wünsche, W. Näther, Least-squares fuzzy regression with fuzzy random variables Fuzzy Sets and Systems. ,vol. 130, pp. 43- 50 ,(2002) , 10.1016/S0165-0114(02)00103-3
Volker Krätschmer, Limit distributions of least squares estimators in linear regression models with vague concepts Journal of Multivariate Analysis. ,vol. 97, pp. 1044- 1069 ,(2006) , 10.1016/J.JMVA.2005.12.005
Peter Eris Kloeden, Phil Diamond, Metric Spaces of Fuzzy Sets: Theory and Applications ,(1994)
Wolfgang Näther, Regression with fuzzy random data Computational Statistics & Data Analysis. ,vol. 51, pp. 235- 252 ,(2006) , 10.1016/J.CSDA.2006.02.021
Yuhu Feng, Liangjian Hu, Huisheng Shu, The variance and covariance of fuzzy random variables and their applications Fuzzy Sets and Systems. ,vol. 120, pp. 487- 497 ,(2001) , 10.1016/S0165-0114(99)00060-3
A. Thavaneswaran, K. Thiagarajah, S.S. Appadoo, Fuzzy coefficient volatility (FCV) models with applications Mathematical and Computer Modelling. ,vol. 45, pp. 777- 786 ,(2007) , 10.1016/J.MCM.2006.07.019
Dabuxilatu Wang, Masami Yasuda, Some asymptotic properties of point estimation with n-dimensional fuzzy data Statistics. ,vol. 38, pp. 167- 181 ,(2004) , 10.1080/02331880310001646626