Partial transfer entropy on rank vectors

作者: D. Kugiumtzis

DOI: 10.1140/EPJST/E2013-01849-4

关键词:

摘要: For the evaluation of information flow in bivariate time series, measures have been employed, such as transfer entropy (TE), symbolic (STE), defined similarly to TE but on ranks components reconstructed vectors, and rank vectors (TERV), similar STE forming for future samples response system with regard current vector. Here we extend TERV multivariate account presence confounding variables, called partial (PTERV). We investigate asymptotic properties PTERV, also (PSTE), construct parametric significance tests under approximations Gaussian gamma null distributions, show that cannot achieve power randomization test using time-shifted surrogates. Using simulations known coupled dynamical systems applying tests, PTERV performs better than PSTE worse (PTE). However, unlike PTE, is robust drifts series it not affected by level detrending.

参考文章(55)
David W. Scott, Stephan R. Sain, Multidimensional Density Estimation Handbook of Statistics. ,vol. 24, pp. 229- 261 ,(2005) , 10.1016/S0169-7161(04)24009-3
Peter Grassberger, Entropy Estimates from Insufficient Samplings arXiv: Data Analysis, Statistics and Probability. ,(2008)
Ioannis Vlachos, Dimitris Kugiumtzis, Nonuniform state-space reconstruction and coupling detection Physical Review E. ,vol. 82, pp. 016207- ,(2010) , 10.1103/PHYSREVE.82.016207
Dimitris Kugiumtzis, Transfer Entropy on Rank Vectors arXiv: Chaotic Dynamics. ,(2010)
Shin-Soo Kang, Michael D. Larsen, Tests of independence in incomplete multi-way tables using likelihood functions Journal of the Korean Statistical Society. ,vol. 41, pp. 189- 198 ,(2012) , 10.1016/J.JKSS.2011.08.003
A. Bahraminasab, F. Ghasemi, A. Stefanovska, P. V. E. McClintock, H. Kantz, Direction of coupling from phases of interacting oscillators: a permutation information approach. Physical Review Letters. ,vol. 100, pp. 084101- ,(2008) , 10.1103/PHYSREVLETT.100.084101
José M. Amigó, Matthew B. Kennel, Ljupco Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems Physica D: Nonlinear Phenomena. ,vol. 210, pp. 77- 95 ,(2005) , 10.1016/J.PHYSD.2005.07.006
Michael G. Rosenblum, Arkady S. Pikovsky, Detecting direction of coupling in interacting oscillators. Physical Review E. ,vol. 64, pp. 045202- ,(2001) , 10.1103/PHYSREVE.64.045202
J.A. Pardo, Some applications of the useful mutual information Applied Mathematics and Computation. ,vol. 72, pp. 33- 50 ,(1995) , 10.1016/0096-3003(94)00162-W