MEMGENE: Spatial pattern detection in genetic distance data

作者: Paul Galpern , Pedro R. Peres-Neto , Jean Polfus , Micheline Manseau

DOI: 10.1111/2041-210X.12240

关键词:

摘要: Summary 1. Landscape genetics studies using neutral markers have focused on the relationship between gene flow and landscape features. Spatial patterns in genetic distances among individuals may reflect spatially uneven of caused by features that influence movement dispersal. 2. We present a method software for identifying spatial neighbourhoods distance data adopts regression framework where predictors are generated Moran’s eigenvectors maps (MEM), multivariate technique developed ecological analyses recommended applications. 3. Using simulated data, we show our MEMGENE can recover reflecting influenced flow. also apply to from highly vagile ungulate population demonstrate aligned with river likely reduce, but not eliminate, 4. package R order detect visualize relatively weak or cryptic aid researchers generating hypotheses about processes underlie these patterns. provides flexible set functions be used modify analysis. Detailed supplementary documentation tutorials provided.

参考文章(28)
ANDREW STORFER, MELANIE A. MURPHY, STEPHEN F. SPEAR, ROLF HOLDEREGGER, LISETTE P. WAITS, Landscape genetics: where are we now? Molecular Ecology. ,vol. 19, pp. 3496- 3514 ,(2010) , 10.1111/J.1365-294X.2010.04691.X
Sewall Wright, Isolation by Distance. Genetics. ,vol. 28, pp. 114- 138 ,(1943)
John Novembre, Matthew Stephens, Interpreting principal component analyses of spatial population genetic variation. Nature Genetics. ,vol. 40, pp. 646- 649 ,(2008) , 10.1038/NG.139
Thibaut Jombart, Sébastien Devillard, François Balloux, Discriminant analysis of principal components: a new method for the analysis of genetically structured populations BMC Genetics. ,vol. 11, pp. 94- 94 ,(2010) , 10.1186/1471-2156-11-94
Helene H. Wagner, Marie-Josée Fortin, A conceptual framework for the spatial analysis of landscape genetic data Conservation Genetics. ,vol. 14, pp. 253- 261 ,(2013) , 10.1007/S10592-012-0391-5
Daniel A. Griffith, Pedro R. Peres-Neto, SPATIAL MODELING IN ECOLOGY: THE FLEXIBILITY OF EIGENFUNCTION SPATIAL ANALYSES Ecology. ,vol. 87, pp. 2603- 2613 ,(2006) , 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
Erin L. Koen, Jeff Bowman, Colin J. Garroway, Stephen C. Mills, Paul J. Wilson, Landscape resistance and American marten gene flow Landscape Ecology. ,vol. 27, pp. 29- 43 ,(2012) , 10.1007/S10980-011-9675-2
S. Dray, R. Pélissier, P. Couteron, M.-J. Fortin, P. Legendre, P. R. Peres-Neto, E. Bellier, R. Bivand, F. G. Blanchet, M. De Cáceres, A.-B. Dufour, E. Heegaard, T. Jombart, F. Munoz, J. Oksanen, J. Thioulouse, H. H. Wagner, Community ecology in the age of multivariate multiscale spatial analysis Ecological Monographs. ,vol. 82, pp. 257- 275 ,(2012) , 10.1890/11-1183.1
T Jombart, D Pontier, A-B Dufour, Genetic markers in the playground of multivariate analysis Heredity. ,vol. 102, pp. 330- 341 ,(2009) , 10.1038/HDY.2008.130
CHIBIAO CHEN, ERIC DURAND, FLORENCE FORBES, OLIVIER FRANÇOIS, Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study Molecular Ecology Notes. ,vol. 7, pp. 747- 756 ,(2007) , 10.1111/J.1471-8286.2007.01769.X