ALMOST PERIODIC SOLUTIONS FOR HIGHER-ORDER HOPFIELD NEURAL NETWORKS WITHOUT BOUNDED ACTIVATION FUNCTIONS

作者: Fuxing Zhang , Ya Li

DOI:

关键词:

摘要: In this paper, we consider higher-order Hopfield neural networks (HHNNs) with time-varying delays. Based on the fixed point theorem, Lya- punov functional method, dierential inequality techniques, and without as- suming boundedness activation functions, establish sucient conditions for existence local exponential stability of almost peri- odic solutions. The results paper are new they complement previ- ously known results.

参考文章(6)
Jinde Cao, Jinling Liang, James Lam, Exponential stability of high-order bidirectional associative memory neural networks with time delays Physica D: Nonlinear Phenomena. ,vol. 199, pp. 425- 436 ,(2004) , 10.1016/J.PHYSD.2004.09.012
Haijun Jiang, Zhidong Teng, Boundedness and global stability for nonautonomous recurrent neural networks with distributed delays Chaos, Solitons & Fractals. ,vol. 30, pp. 83- 93 ,(2006) , 10.1016/J.CHAOS.2005.08.132
Bingji Xu, Xinzhi Liu, Xiaoxin Liao, Global asymptotic stability of high-order Hopfield type neural networks with time delays Computers & Mathematics With Applications. ,vol. 45, pp. 1729- 1737 ,(2003) , 10.1016/S0898-1221(03)00151-2
Haifeng Yang, Tianguang Chu, Cishen Zhang, Exponential stability of neural networks with variable delays via LMI approach Chaos, Solitons & Fractals. ,vol. 30, pp. 133- 139 ,(2006) , 10.1016/J.CHAOS.2005.08.134
A. Dembo, O. Farotimi, T. Kailath, High-order absolutely stable neural networks IEEE Transactions on Circuits and Systems. ,vol. 38, pp. 57- 65 ,(1991) , 10.1109/31.101303