A possibilistic approach to clustering

作者: R. Krishnapuram , J.M. Keller

DOI: 10.1109/91.227387

关键词:

摘要: The clustering problem is cast in the framework of possibility theory. The approach differs from the existing clustering methods in that the resulting partition of the data can be interpreted …

参考文章(29)
James M. Keller, Raghu Krishnapuram, Fuzzy Set Methods in Computer Vision Springer, Boston, MA. pp. 121- 145 ,(1992) , 10.1007/978-1-4615-3640-6_6
A. Schroeder, Y. Ok, Edwin Diday, The Dynamic Clusters Method in Pattern Recognition. ifip congress. pp. 691- 697 ,(1974)
Olfa Nasraoui, Raghu Krishnapuram, Hichem Frigui, A fuzzy clustering algorithm to detect planar and quadric shapes ,(1992)
Linda G. Shapiro, Robert M. Haralock, Computer and Robot Vision Addison-Wesley Longman Publishing Co., Inc.. ,(1991)
Lotfi A. Zadeh, A Theory of Approximate Reasoning Machine intelligence. ,vol. 9, pp. 149- 194 ,(1979)
J.C. Bezdek, E.C.-K. Tsao, N.R. Pal, Fuzzy Kohonen clustering networks ieee international conference on fuzzy systems. pp. 1035- 1043 ,(1992) , 10.1109/FUZZY.1992.258797
H.-J. Zimmermann, P. Zysno, Quantifying vagueness in decision models European Journal of Operational Research. ,vol. 22, pp. 148- 158 ,(1985) , 10.1016/0377-2217(85)90223-1
Raghu J. Krishnapuram, Hichem Frigui, Olfa Nasraoui, New fuzzy shell clustering algorithms for boundary detection and pattern recognition Intelligent Robots and Computer Vision X: Algorithms and Techniques. ,vol. 1607, pp. 458- 465 ,(1992) , 10.1117/12.57082
X. Zhuang, T. Wang, P. Zhang, A highly robust estimator through partially likelihood function modeling and its application in computer vision IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 14, pp. 19- 35 ,(1992) , 10.1109/34.107011