Panoptic Segmentation

作者: Alexander Kirillov , Kaiming He , Ross Girshick , Carsten Rother , Piotr Dollar

DOI: 10.1109/CVPR.2019.00963

关键词:

摘要: We propose and study a task we name panoptic segmentation (PS). Panoptic unifies the typically distinct tasks of semantic (assign class label to each pixel) instance (detect segment object instance). The proposed requires generating coherent scene that is rich complete, an important step toward real-world vision systems. While early work in computer addressed related image/scene parsing tasks, these are not currently popular, possibly due lack appropriate metrics or associated recognition challenges. To address this, novel quality (PQ) metric captures performance for all classes (stuff things) interpretable unified manner. Using metric, perform rigorous both human machine PS on three existing datasets, revealing interesting insights about task. aim our revive interest community more view image segmentation. For analysis up-to-date results, please check arXiv version paper: {\small\url{https://arxiv.org/abs/1801.00868}}.

参考文章(42)
Ronan Collobert, Piotr Dollár, Pedro O. Pinheiro, Learning to segment object candidates neural information processing systems. ,vol. 28, pp. 1990- 1998 ,(2015)
Ross Girshick, Jitendra Malik, Bharath Hariharan, Pablo Arbeláez, Simultaneous Detection and Segmentation european conference on computer vision. pp. 297- 312 ,(2014) , 10.1007/978-3-319-10584-0_20
Min Sun, Byung-soo Kim, Pushmeet Kohli, Silvio Savarese, Relating Things and Stuff via ObjectProperty Interactions IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 36, pp. 1370- 1383 ,(2014) , 10.1109/TPAMI.2013.193
Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, C. Lawrence Zitnick, Microsoft COCO: Common Objects in Context Computer Vision – ECCV 2014. pp. 740- 755 ,(2014) , 10.1007/978-3-319-10602-1_48
Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks for semantic segmentation computer vision and pattern recognition. pp. 3431- 3440 ,(2015) , 10.1109/CVPR.2015.7298965
P. Dollar, C. Wojek, B. Schiele, P. Perona, Pedestrian Detection: An Evaluation of the State of the Art IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 34, pp. 743- 761 ,(2012) , 10.1109/TPAMI.2011.155
Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John Winn, Andrew Zisserman, The Pascal Visual Object Classes Challenge: A Retrospective International Journal of Computer Vision. ,vol. 111, pp. 98- 136 ,(2015) , 10.1007/S11263-014-0733-5
Régis Vaillant, Christophe Monrocq, Yann LeCun, Original approach for the localisation of objects in images IEE Proceedings - Vision, Image, and Signal Processing. ,vol. 141, pp. 245- 250 ,(1994) , 10.1049/IP-VIS:19941301
Zhuowen Tu, Xiangrong Chen, Alan L. Yuille, Song-Chun Zhu, Image Parsing: Unifying Segmentation, Detection, and Recognition International Journal of Computer Vision. ,vol. 63, pp. 113- 140 ,(2005) , 10.1007/S11263-005-6642-X
Joseph Tighe, Marc Niethammer, Svetlana Lazebnik, Scene Parsing with Object Instances and Occlusion Ordering computer vision and pattern recognition. pp. 3748- 3755 ,(2014) , 10.1109/CVPR.2014.479