An SIR epidemic model with partial temporary immunity modeled with delay

作者: Michael L. Taylor , Thomas W. Carr

DOI: 10.1007/S00285-009-0256-9

关键词:

摘要: The SIR epidemic model for disease dynamics considers recovered individuals to be permanently immune, while the SIS immediately resusceptible. We study case of temporary immunity in an SIR-based with delayed coupling between susceptible and removed classes, which results a coupled set delay differential equations. find conditions endemic steady state becomes unstable periodic outbreaks. then use analytical numerical bifurcation analysis describe how severity period outbreaks depend on parameters.

参考文章(27)
Robert M. May, Roy M. Anderson, Infectious Diseases of Humans: Dynamics and Control ,(1991)
J. Kevorkian, Julian D. Cole, Multiple Scale and Singular Perturbation Methods ,(1996)
K. L. Cooke, P. van den Driessche, Analysis of an SEIRS epidemic model with two delays Journal of Mathematical Biology. ,vol. 35, pp. 240- 260 ,(1996) , 10.1007/S002850050051
Fred Brauer, Carlos Castillo-Chavez, Carlos Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology ,(2001)
Didier Pieroux, Thomas Erneux, STRONGLY PULSATING LASERS WITH DELAY Physical Review A. ,vol. 53, pp. 2765- 2771 ,(1996) , 10.1103/PHYSREVA.53.2765
Herbert W. Hethcote, Harlan W. Stech, P. Van Den Driessche, NONLINEAR OSCILLATIONS IN EPIDEMIC MODELS Siam Journal on Applied Mathematics. ,vol. 40, pp. 1- 9 ,(1981) , 10.1137/0140001
S. -N. Chow, O. Diekmann, J. Mallet-Paret, Stability, multiplicity and global continuation of symmetric periodic solutions of a nonlinear Volterra integral equation Japan Journal of Applied Mathematics. ,vol. 2, pp. 433- 469 ,(1985) , 10.1007/BF03167085
Mark Dykman, Ira Schwartz, Alexandra Landsman, Disease extinction in the presence of random vaccination. Physical Review Letters. ,vol. 101, pp. 078101- ,(2008) , 10.1103/PHYSREVLETT.101.078101