Canonically Conjugate Variables for the Korteweg-de Vries Equation and the Toda Lattice with Periodic Boundary Conditions*)

作者: H. Flaschka , D. W. McLaughlin

DOI: 10.1143/PTP.55.438

关键词:

摘要: … (both with periodic boundary conditions) have recently been the subject of several … It is intended here that ,11 change in such av\-ay so as to remain a zeroboundary condition …

参考文章(8)
S. S. Ivanov, D. Ya. Petrina, A. L. Rebenko, On equations for the coefficient functions of the S matrix in quantum field theory Theoretical and Mathematical Physics. ,vol. 19, pp. 332- 339 ,(1974) , 10.1007/BF01037189
Mark J. Ablowitz, David J. Kaup, Alan C. Newell, Harvey Segur, The Inverse scattering transform fourier analysis for nonlinear problems Studies in Applied Mathematics. ,vol. 53, pp. 249- 315 ,(1974) , 10.1002/SAPM1974534249
V. S. Kulikov, Degenerate elliptic curves and resolution of uni- and bimodal singularities Functional Analysis and Its Applications. ,vol. 9, pp. 69- 70 ,(1975) , 10.1007/BF01078187
Peter D. Lax, Periodic solutions of the KdV equation Communications on Pure and Applied Mathematics. ,vol. 28, pp. 141- 188 ,(2010) , 10.1002/CPA.3160280105
H. P. McKean, P. van Moerbeke, The spectrum of Hill's equation Inventiones Mathematicae. ,vol. 30, pp. 217- 274 ,(1975) , 10.1007/BF01425567
F. V. Atkinson, George H. Weiss, Discrete and continuous boundary problems ,(1964)
Clifford S. Gardner, John M. Greene, Martin D. Kruskal, Robert M. Miura, Korteweg-devries equation and generalizations. VI. methods for exact solution Communications on Pure and Applied Mathematics. ,vol. 27, pp. 97- 133 ,(1974) , 10.1002/CPA.3160270108
Daniel Edwin Rutherford, Classical Mechanics ,(1951)