Efficient approximate k-fold and leave-one-out cross-validation for ridge regression

作者: Rosa J. Meijer , Jelle J. Goeman

DOI: 10.1002/BIMJ.201200088

关键词:

摘要: In model building and evaluation, cross-validation is a frequently used resampling method. Unfortunately, this method can be quite time consuming. article, we discuss an approximation that much faster in generalized linear models Cox' proportional hazards with ridge penalty term. Our based on Taylor expansion around the estimate of full model. way, all cross-validated estimates are approximated without refitting The tuning parameter now chosen these approximations optimized less time. most accurate when approximating leave-one-out results for large data sets which originally computationally demanding situation. order to demonstrate method's performance, it will applied several microarray sets. An R package penalized, implements method, available CRAN.

参考文章(29)
Gene H. Golub, Michael Heath, Grace Wahba, Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter Technometrics. ,vol. 21, pp. 215- 223 ,(1979) , 10.1080/00401706.1979.10489751
Johan A. Westerhuis, Huub C. J. Hoefsloot, Suzanne Smit, Daniel J. Vis, Age K. Smilde, Ewoud J. J. van Velzen, John P. M. van Duijnhoven, Ferdi A. van Dorsten, Assessment of PLSDA cross validation Metabolomics. ,vol. 4, pp. 81- 89 ,(2008) , 10.1007/S11306-007-0099-6
H.M. Bovelstad, S. Nygard, H.L. Storvold, M. Aldrin, O. Borgan, A. Frigessi, O.C. Lingjaerde, Predicting survival from microarray data—a comparative study Bioinformatics. ,vol. 23, pp. 2080- 2087 ,(2007) , 10.1093/BIOINFORMATICS/BTM305
Wessel N. van Wieringen, David Kun, Regina Hampel, Anne-Laure Boulesteix, Survival prediction using gene expression data: A review and comparison Computational Statistics & Data Analysis. ,vol. 53, pp. 1590- 1603 ,(2009) , 10.1016/J.CSDA.2008.05.021
Hansheng Wang, Bo Li, Chenlei Leng, Shrinkage tuning parameter selection with a diverging number of parameters Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 71, pp. 671- 683 ,(2009) , 10.1111/J.1467-9868.2008.00693.X
Hans C. van Houwelingen, Tako Bruinsma, Augustinus A. M. Hart, Laura J. van't Veer, Lodewyk F. A. Wessels, Cross-validated Cox regression on microarray gene expression data Statistics in Medicine. ,vol. 25, pp. 3201- 3216 ,(2006) , 10.1002/SIM.2353
Gavin C. Cawley, Nicola L.C. Talbot, Fast exact leave-one-out cross-validation of sparse least-squares support vector machines Neural Networks. ,vol. 17, pp. 1467- 1475 ,(2004) , 10.1016/J.NEUNET.2004.07.002