Convergence of generalized spherical harmonic expansions in the three nucleon bound state

作者: T.R. Schneider

DOI: 10.1016/0370-2693(72)90545-X

关键词:

摘要: Abstract Theorems are presented on the rate of convergence approximate three nucleon binding energies obtained by expanding bound state wavefunction in a truncated generalized spherical harmonic basis. The is related to properties two-body potential.

参考文章(6)
A. J. Dragt, Classification of Three‐Particle States According to SU3 Journal of Mathematical Physics. ,vol. 6, pp. 533- 553 ,(1965) , 10.1063/1.1704306
Harold William Galbraith, Four‐Body Problem: A Complete System of Angular Functions Journal of Mathematical Physics. ,vol. 12, pp. 782- 794 ,(1971) , 10.1063/1.1665647
M. Beiner, M. Fabre de la Ripelle, Convergence of the hyperspherical formalism applied to the trinucleons Lettere Al Nuovo Cimento. ,vol. 1, pp. 584- 589 ,(1971) , 10.1007/BF02770154
Thomas R. Schneider, Theorem on the Convergence Rate of Generalized Fourier Series Journal of Mathematical Physics. ,vol. 12, pp. 1508- 1509 ,(1971) , 10.1063/1.1665765
G.M. Vainikko, Asymptotic evaluations of the error of projection methods for the eigenvalue problem Ussr Computational Mathematics and Mathematical Physics. ,vol. 4, pp. 9- 36 ,(1964) , 10.1016/0041-5553(64)90237-X
Walter Rudin, Functional Analysis ,(1973)