Optimal boundary control for a linear stochastic distributed parameter system using functional analysis

作者: S. Omatu , H. Shibata , S. Hata

DOI: 10.1016/S0019-9958(74)80040-9

关键词:

摘要: So as to investigate the optimal control problem for a class of stochastic distributed parameter systems, we newly introduce methods using functional analysis. We derive Hamilton-Jacobi equation in Hilbert space and treat boundary with quadratic cost linear system subject both additive statedependent noises. Furthermore from viewpoint design techniques controller, briefly discuss pointwise problem.

参考文章(11)
P. Lelong, Jacques Louis Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles Gauthier-Villars : Dunod. ,(1968)
Harold J. Kushner, Stochastic Stability and Control ,(2012)
A. V. Balakrishnan, Optimal Control Problems in Banach Spaces Journal of the Society for Industrial and Applied Mathematics Series A Control. ,vol. 3, pp. 152- 180 ,(1965) , 10.1137/0303014
Ruth F. Curtain, Infinite-Dimensional Filtering Siam Journal on Control. ,vol. 13, pp. 89- 104 ,(1975) , 10.1137/0313005
Ruth F Curtain, Peter L Falb, Ito's lemma in infinite dimensions Journal of Mathematical Analysis and Applications. ,vol. 31, pp. 434- 448 ,(1970) , 10.1016/0022-247X(70)90037-5
Heinz Erzberger, M. Kim, Optimum boundary control of distributed parameter systems Information & Computation. ,vol. 9, pp. 265- 278 ,(1966) , 10.1016/S0019-9958(66)90156-2
Peter L. Falb, Infinite-dimensional filtering: The Kalman\3-Bucy filter in Hilbert space* Information & Computation. ,vol. 11, pp. 102- 137 ,(1967) , 10.1016/S0019-9958(67)90417-2
S.G. Tzafestas, J.M. Nightingale, Optimal control of a class of linear stochastic distributed-parameter systems Proceedings of the Institution of Electrical Engineers. ,vol. 115, pp. 1213- 1220 ,(1968) , 10.1049/PIEE.1968.0214
Jean Dieudonne', Foundations of Modern Analysis ,(1969)