Advancing synthesis of decision tree-based multiple classifier systems: an approximate computing case study

作者: Nicola Mazzocca , Mario Barbareschi , Salvatore Barone

DOI: 10.1007/S10115-021-01565-5

关键词:

摘要: So far, multiple classifier systems have been increasingly designed to take advantage of hardware features, such as high parallelism and computational power. Indeed, compared software implementations, accelerators guarantee higher throughput lower latency. Although the combination classifiers leads classification accuracy, required area overhead makes design a accelerator unfeasible, hindering adoption commercial configurable devices. For this reason, in paper, we exploit approximate computing paradigm trade off for accuracy. In particular, starting from trained DT models employing precision-scaling technique, explore decision tree variants by means objective optimization problem, demonstrating significant performance improvement targeting field-programmable gate array

参考文章(38)
Flora Amato, Mario Barbareschi, Valentina Casola, Antonino Mazzeo, An FPGA-Based Smart Classifier for Decision Support Systems Studies in Computational Intelligence. pp. 289- 299 ,(2014) , 10.1007/978-3-319-01571-2_34
Flora Amato, Mario Barbareschi, Valentina Casola, Antonino Mazzeo, Sara Romano, Towards Automatic Generation of Hardware Classifiers Algorithms and Architectures for Parallel Processing. pp. 125- 132 ,(2013) , 10.1007/978-3-319-03889-6_14
Mario Barbareschi, Salvatore Del Prete, Francesco Gargiulo, Antonino Mazzeo, Carlo Sansone, Decision Tree-Based Multiple Classifier Systems: An FPGA Perspective multiple classifier systems. pp. 194- 205 ,(2015) , 10.1007/978-3-319-20248-8_17
M. A. Aizerman, Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning Automation and Remote Control. ,vol. 25, pp. 821- 837 ,(1964)
Abdullah Konak, David W. Coit, Alice E. Smith, Multi-objective optimization using genetic algorithms: A tutorial Reliability Engineering & System Safety. ,vol. 91, pp. 992- 1007 ,(2006) , 10.1016/J.RESS.2005.11.018
Swagath Venkataramani, Anand Raghunathan, Jie Liu, Shuayb Zarar, Scalable-effort classifiers for energy-efficient machine learning design automation conference. pp. 67- ,(2015) , 10.1145/2744769.2744904
Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, Anand Raghunathan, Analysis and characterization of inherent application resilience for approximate computing design automation conference. pp. 113- ,(2013) , 10.1145/2463209.2488873
Hai-Long Nguyen, Yew-Kwong Woon, Wee-Keong Ng, A survey on data stream clustering and classification Knowledge and Information Systems. ,vol. 45, pp. 535- 569 ,(2015) , 10.1007/S10115-014-0808-1
Divya Gulati, Doug Burger, Stephen W. Keckler, Changkyu Kim, Simha Sethumadhavan, M.S. Govindan, Nitya Ranganathan, The Art of Deception: Adaptive Precision Reduction for Area Efficient Physics Acceleration international symposium on microarchitecture. pp. 394- 406 ,(2007) , 10.1109/MICRO.2007.41
Fang Fang, Tsuhan Chen, Rob A. Rutenbar, Floating-point bit-width optimization for low-power signal processing applications IEEE International Conference on Acoustics Speech and Signal Processing. ,vol. 3, pp. 3208- 3211 ,(2002) , 10.1109/ICASSP.2002.5745332