A non-autonomous multi-strain SIS epidemic model.

作者: Maia Martcheva

DOI: 10.1080/17513750802638712

关键词:

摘要: … of the system (15) is persistent. We say that strain i is weakly uniformly persistent, if there exists δ>0, … We establish the uniform strong persistence for both strains in the following theorem. …

参考文章(43)
Horst R. Thieme, Pathogen Competition and Coexistence and the Evolution of Virulence Biological and Medical Physics, Biomedical Engineering. pp. 123- 153 ,(2007) , 10.1007/978-3-540-34426-1_6
Horst R. Thieme, Mathematics in Population Biology ,(2003)
D. Normile, M. Enserink, With Change in the Seasons, Bird Flu Returns Science. ,vol. 315, pp. 448- 448 ,(2007) , 10.1126/SCIENCE.315.5811.448
Robert M. May, Roy M. Anderson, Infectious Diseases of Humans: Dynamics and Control ,(1991)
Herbert W. Hethcote, Simon A. Levin, Periodicity in Epidemiological Models Levin, S A , T G Hallam And L J Gross (Ed ) Biomathematics, Vol 18 Applied Mathematical Ecology; Second Autumn Course on Mathematical Ecology, Trieste, Italy, November-December, 1986 Xiv+491p Springer-Verlag. ,vol. 18, pp. 193- 211 ,(1989) , 10.1007/978-3-642-61317-3_8
J. M. Cushing, Periodic Time-Dependent Predator-Prey Systems SIAM Journal on Applied Mathematics. ,vol. 32, pp. 82- 95 ,(1977) , 10.1137/0132006
Shair Ahmad, Francisco Montes de Oca, Extinction in nonautonomous T-periodic competitive Lotka-Volterra system Applied Mathematics and Computation. ,vol. 90, pp. 155- 166 ,(1998) , 10.1016/S0096-3003(97)00396-2
Robert M. May, Martin A. Nowak, Superinfection, metapopulation dynamics, and the evolution of diversity. Journal of Theoretical Biology. ,vol. 170, pp. 95- 114 ,(1994) , 10.1006/JTBI.1994.1171