Quantitative Analysis of Twinning-Induced Plasticity (TWIP) in Beta-Titanium Alloy

作者: Xiaohua Min , Xuejiao Chen , Satoshi Emura , Kaneaki Tsuzaki , Koichi Tsuchiya

DOI: 10.1002/9781118792148.CH140

关键词:

摘要: Work hardening behavior of Ti-15Mo alloy (mass %) was examined through quantitative evaluation the {332} twinning structural evolution at various plastic strain levels by optical microscope (OM) observations combined with electron backscatter diffraction analyses (EBSD). Based on analyzed images from micrographs, area fraction twins rapidly increases to 40% 0.05, and gradually reaches 52% 0.12. With further deformation a 0.17, it has no significant change. The EBSD inverse pole figure maps exhibit that become denser thicker increasing strain. A linear relationship is found between true stress square root mean free path dislocations up 0.12, indicating work mainly dominated dynamic microstructure refinement induced twinning.

参考文章(15)
Heung Nam Han, Chang-Seok Oh, Gyosung Kim, Ohjoon Kwon, Design method for TRIP-aided multiphase steel based on a microstructure-based modelling for transformation-induced plasticity and mechanically induced martensitic transformation Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 499, pp. 462- 468 ,(2009) , 10.1016/J.MSEA.2008.09.026
G. Dini, A. Najafizadeh, R. Ueji, S.M. Monir-Vaghefi, TENSILE DEFORMATION BEHAVIOR OF HIGH MANGANESE AUSTENITIC STEEL: THE ROLE OF GRAIN SIZE Materials & Design. ,vol. 31, pp. 3395- 3402 ,(2010) , 10.1016/J.MATDES.2010.01.049
G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Flow stress analysis of TWIP steel via the XRD measurement of dislocation density Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 527, pp. 2759- 2763 ,(2010) , 10.1016/J.MSEA.2010.01.033
S.L. Nyakana, J.C. Fanning, R.R. Boyer, Quick reference guide for β titanium alloys in the 00s Journal of Materials Engineering and Performance. ,vol. 14, pp. 799- 811 ,(2005) , 10.1361/105994905X75646
Xiaohua Min, Xuejiao Chen, Satoshi Emura, Koichi Tsuchiya, Mechanism of twinning-induced plasticity in β-type Ti–15Mo alloy Scripta Materialia. ,vol. 69, pp. 393- 396 ,(2013) , 10.1016/J.SCRIPTAMAT.2013.05.027
R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, K. Kunishige, Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure Scripta Materialia. ,vol. 59, pp. 963- 966 ,(2008) , 10.1016/J.SCRIPTAMAT.2008.06.050
G. M. Rusakov, A. V. Litvinov, V. S. Litvinov, Deformation twinning of titanium β-alloys of transition class Metal Science and Heat Treatment. ,vol. 48, pp. 244- 251 ,(2006) , 10.1007/S11041-006-0078-Y
Matthieu Marteleur, Fan Sun, Thierry Gloriant, Philippe Vermaut, Pascal J. Jacques, Frédéric Prima, On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects Scripta Materialia. ,vol. 66, pp. 749- 752 ,(2012) , 10.1016/J.SCRIPTAMAT.2012.01.049
S. Hanada, O. Izumi, Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 17, pp. 1409- 1420 ,(1986) , 10.1007/BF02650122
X.H. Min, S. Emura, N. Sekido, T. Nishimura, K. Tsuchiya, K. Tsuzaki, Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 527, pp. 2693- 2701 ,(2010) , 10.1016/J.MSEA.2009.12.050