Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction

作者: TIMOTHY BARTH , PAUL FREDERICKSON

DOI: 10.2514/6.1990-13

关键词:

摘要: High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to development these methods construction a k-exact reconstruction operator given cell-averaged quantities and use high flux quadrature formulas. General polygonal control volumes (with curved boundary edges) considered. The formulations presented make no explicit assumption as complexity or convexity volumes. Numerical examples Ringleb flow validate methodology.

参考文章(15)
P.G. Ciarlet, P.-A. Raviart, THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. pp. 409- 474 ,(1972) , 10.1016/B978-0-12-068650-6.50020-4
Åke Björck, Least squares methods Handbook of Numerical Analysis. ,vol. 1, pp. 465- 652 ,(1990) , 10.1016/S1570-8659(05)80036-5
Antony Jameson, Dimitri Mavriplis, Multigrid solution of the Euler equations on unstructured and adaptive meshes University of Colorado and USAF. ,(1987)
Philip L. Roe, Bram Van Leer, James L. Thomas, Richard W. Newsome, A comparison of numerical flux formulas for the Euler and Navier-Stokes equations 8th Computational Fluid Dynamics Conference, 1987. ,(1987)
Ami Harten, Stanley Osher, Uniformly high-order accurate nonoscillatory schemes SIAM Journal on Numerical Analysis. ,vol. 24, pp. 279- 309 ,(1987) , 10.1137/0724022
Philippe G. Ciarlet, J. T. Oden, The Finite Element Method for Elliptic Problems ,(1978)
Ami Harten, Bjorn Engquist, Stanley Osher, Sukumar R Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, 111 Journal of Computational Physics. ,vol. 71, pp. 231- 303 ,(1987) , 10.1016/0021-9991(87)90031-3
Phillip Colella, Paul R Woodward, The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations Journal of Computational Physics. ,vol. 54, pp. 174- 201 ,(1984) , 10.1016/0021-9991(84)90143-8
A. Jameson, D. Mavriplis, Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh AIAA Journal. ,vol. 24, pp. 611- 618 ,(1985) , 10.2514/3.9315