Stochastic resonance in Gaussian quantum channels

作者: Cosmo Lupo , Stefano Mancini , Mark M Wilde

DOI: 10.1088/1751-8113/46/4/045306

关键词:

摘要: We determine conditions for the presence of stochastic resonance in a lossy bosonic channel with nonlinear, threshold decoding. The effect occurs if and only detection is outside "forbidden interval". show that it takes place different settings: when transmitting classical messages through channel, over an entanglement-assisted discriminating channels loss parameters. Moreover, we consider setting which transmission qubit particular encoding In all cases, assume addition Gaussian noise to signal does not matter who, between sender receiver, introduces such noise. Remarkably, results are obtained considering private communication. this case symmetry receiver broken interval" may vanish, leading occurrence effects any value threshold.

参考文章(26)
H. M. Wiseman, G. J. Milburn, Quantum theory of field-quadrature measurements. Physical Review A. ,vol. 47, pp. 642- 662 ,(1993) , 10.1103/PHYSREVA.47.642
M. B. Plenio, Logarithmic Negativity: A Full Entanglement Monotone That is not Convex Physical Review Letters. ,vol. 95, pp. 090503- ,(2005) , 10.1103/PHYSREVLETT.95.090503
Renato Renner, Nicolas Gisin, Barbara Kraus, Information-theoretic security proof for quantum-key-distribution protocols Physical Review A. ,vol. 72, pp. 012332- ,(2005) , 10.1103/PHYSREVA.72.012332
Julian Juhi-Lian Ting, Stochastic resonance for quantum channels Physical Review E. ,vol. 59, pp. 2801- 2803 ,(1999) , 10.1103/PHYSREVE.59.2801
Adi R. Bulsara, Device physics: no-nuisance noise. Nature. ,vol. 437, pp. 962- 963 ,(2005) , 10.1038/437962A
A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators Reports on Mathematical Physics. ,vol. 3, pp. 275- 278 ,(1972) , 10.1016/0034-4877(72)90011-0
Filippo Caruso, Susana F. Huelga, Martin B. Plenio, Noise-enhanced classical and quantum capacities in communication networks. Physical Review Letters. ,vol. 105, pp. 190501- ,(2010) , 10.1103/PHYSREVLETT.105.190501
Samuel L. Braunstein, H. J. Kimble, Dense coding for continuous variables Physical Review A. ,vol. 61, pp. 042302- ,(2000) , 10.1103/PHYSREVA.61.042302
Charles H. Bennett, Stephen J. Wiesner, Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States Physical Review Letters. ,vol. 69, pp. 2881- 2884 ,(1992) , 10.1103/PHYSREVLETT.69.2881