Poisson Sigma Model on the Sphere

作者: Francesco Bonechi , Maxim Zabzine

DOI: 10.1007/S00220-008-0615-1

关键词:

摘要: We evaluate the path integral of Poisson sigma model on sphere and study correlators quantum observables. argue that for to be well-defined corresponding Poisson structure should unimodular. The construction finite dimensional BV theory is presented we it responsible leading semiclassical contribution. For a (twisted) generalized Kahler manifold discuss gauge fixed action model. Using localization prove holomorphic result indeed full result.

参考文章(60)
Thomas Schwarzweller, Allen C. Hirshfeld, The partition function of the linear Poisson-sigma model on arbitrary surfaces arXiv: High Energy Physics - Theory. ,(2001)
Yvette Kosmann-Schwarzbach, MODULAR VECTOR FIELDS AND BATALIN-VILKOVISKY ALGEBRAS Banach Center Publications. ,vol. 51, pp. 109- 129 ,(2000)
Pavel Mnev, Notes on simplicial BF theory arXiv: High Energy Physics - Theory. ,(2006)
Maxim Zabzine, Lectures on generalized complex geometry and supersymmetry Archivum Mathematicum. ,vol. 42, pp. 119- 146 ,(2006)
Sergey Barannikov, Maxim Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields International Mathematics Research Notices. ,vol. 1998, pp. 201- 215 ,(1998) , 10.1155/S1073792898000166
Marco Gualtieri, Branes on Poisson Varieties The Many Facets of Geometry. pp. 368- 394 ,(2010) , 10.1093/ACPROF:OSO/9780199534920.003.0018
Zhang-Ju Liu, Alan Weinstein, Ping Xu, Manin triples for Lie bialgebroids Journal of Differential Geometry. ,vol. 45, pp. 547- 574 ,(1997) , 10.4310/JDG/1214459842
Marc Henneaux, Claudio Teitelboim, None, Quantization of Gauge Systems ,(1992)