The mixed problem in Lipschitz domains with general decompositions of the boundary

作者: J. L. Taylor , K. A. Ott , R. M. Brown

DOI: 10.1090/S0002-9947-2012-05711-4

关键词:

摘要: This paper continues the study of mixed problem for Laplacian. We consider a bounded Lipschitz domain $\Omega\subset \reals^n$, $n\geq2$, with boundary that is decomposed as $\partial\Omega=D\cup N$, $D$ and $N$ disjoint. let $\Lambda$ denote (relative to $\partial\Omega$) impose conditions on dimension shape sets $D$. Under these geometric criteria, we show there exists $p_0>1$ depending $\Omega$ such $p$ in interval $(1,p_0)$, Neumann data space $L^p(N)$ Dirichlet Sobolev $W^ {1,p}(D) $ has unique solution non-tangential maximal function gradient $L^p(\partial\Omega)$. also obtain results $p=1$ when comes from Hardy spaces, result weighted spaces.

参考文章(27)
Norman G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 17, pp. 189- 206 ,(1963)
R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals Studia Mathematica. ,vol. 51, pp. 241- 250 ,(1974) , 10.4064/SM-51-3-241-250
Zhongwei Shen, Weighted estimates in $L^{2}$ for Laplace's equation on Lipschitz domains Transactions of the American Mathematical Society. ,vol. 357, pp. 2843- 2870 ,(2004) , 10.1090/S0002-9947-04-03608-6
Katharine A. Ott, Russell M. Brown, The mixed problem for the Laplacian in Lipschitz domains arXiv: Analysis of PDEs. ,(2009) , 10.1007/S11118-012-9317-6
Zhongwei Shen, The Lp boundary value problems on Lipschitz domains Advances in Mathematics. ,vol. 216, pp. 212- 254 ,(2007) , 10.1016/J.AIM.2007.05.017